PROCESSES OF FORMATION OF SODIUM BICARBONATE GROUNDWATER IN THE RAINWATER – SANDSTONE SYSTEM

Author:

Pavlov S. Kh.1

Affiliation:

1. Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

Abstract

In modeling, a study was made of the processes of the physical-chemical interaction between rainwater and sandstone. It was stated that as a result of the interaction, already in mineralization of water equal to 55 mg/l, there emerges a pure soda solution whose sharp oxidation properties, retaining up to 200 mg/l, change to sharp restorative when exceeding this value. At the mineralization of water equal to 30 mg/l, an intensive increase in the number of hydroxide ions in a solution makes it highly alkaline. The active removal of calcium from solution is due to the formation of not only solid phase calcite, whose share does not exceed 15 %, but largely limonite, whose content is as high as 25 %. The accumulation of high concentrations of sodium in a solution is caused by the absence of its secondary mineral formations in a wide range of the rock/water ratios. Under reservoir conditions, the solution is composed of carbonate. This solution, transferred from reservoir to surface conditions, undergoes transformation in the result of interaction with the atmosphere. A decrease in pH of the solution resulted in the acquisition of sharp oxidation properties, with the cation, sulfate, fluorine and chlorine contents remained at the level corresponding to the reservoir conditions and the cardinal changes affected the carbonate system components and silicon compounds. Hydrosilicate ion was transformed into precipitated silicon oxide. Carbonate ions were transformed into hydrocarbonate, and the additional hydrocarbonate ions were formed for the solution to preserve a state of equilibrium after the removal of the representative number of hydrosilicate ions therefrom. An amount of carbon required for their formation was extracted from the atmosphere. The solution became hydrocarbonate, with hydrosilicate ions almost disappeared therefrom. Different calculation options for model solution, which is in equilibrium with the atmosphere, correlate with the representative group of soda-type groundwater. The calculation results are confirmed by field observations over the authigenic mineral formation on a large part of the Russian territory.

Publisher

Institute of Earth's Crust, Siberian Branch of the Russian Academy of Sciences

Subject

Earth-Surface Processes,Geophysics,Geology,Economic Geology

Reference51 articles.

1. Abdrakhmanov R.F., Popov V.G., 2010. Geochemistry and Groundwater Formation Processes in the Southern Urals. Gilem, Ufa, 420 p. (in Russian)

2. Appelo C.A.J., Postma D., 1994. Geochemistry, Groundwater and Pollution. Brookfield, Rotterdam, 536 p.

3. Berman R.G., 1988. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. Journal of Petrology 29 (2), 445–522. https://doi.org/10.1093/petrology/29.2.445.

4. Blake R., 1989. The Origin of High Sodium Bicarbonate Waters in the Otway Basin, Victoria, Australia. In: D.L. Miles (Ed.), Water-Rock Interaction (WRI-6). Proceedings of the 6th International Symposium (August 3–6, 1989, Malvern, UK). Brookfield, Rotterdam, p. 83–85.

5. Chudnenko K.V., 2010. Thermodynamic Modeling in Geochemistry: Theory, Algorithms, Software, Applications. Geo, Novosibirsk, 287 p. (in Russian)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3