THREE-DIMENSIONAL VELOCITY STRUCTURE OF THE CRUST IN CENTRAL LAKE BAIKAL FROM LOCAL SEISMIC TOMOGRAPHY

Author:

Eponeshnikova L. Yu.1,Duchkov A. A.1,Sanzhieva D. P.-D.2,Yaskevich S. V.3

Affiliation:

1. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

2. Dobretsov Geological Institute, Siberian Branch of the Russian Academy of Sciences; Buryat Branch of the Federal Research Center of the Geophysical Survey, Russian Academy of Sciences

3. Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

Abstract

This work deals with the importance of studying seismicity and deep structure of the Earth’s crust in the region of the Baikal rift zone. The study presents a three-dimensional velocity structure of the Earth’s crust in the central part of Lake Baikal, obtained from the results of tomographic inversion of the travel times of P- and S-waves from more than 800 seismic events. Synthetic tests provide substantiation for the resolution of the tomographic inversion algorithm. The seismic structure of the crust was obtained to a depth of 35 km and has a direct relationship with the geological structure. The three-dimensional distributions of seismic P- and S-wave velocity anomalies are in good agreement with each other.The sharp contrast between the anomalies may indicate a difference in the material composition of the basement of the Central Baikal basin. At a 15-km depth below the Selenga River delta, there is observed a strong low-velocity anomaly which confirms the presence of a thick sedimentary cover therein. In the basement (at depths of 20 km or greater), to the northeast of the intersection between the Delta fault and the Fofanov fault, there occurs a high-velocity anomaly elongated towards the Olkhon Island. This anomaly is probably related to a rigid block in the earth’s crust. The same depths, on the western side of the Baikal-Buguldeika fault, show a reduced Vp/Vs ratio: 1.56–1.65 versus 1.70–1.75 in the adjacent areas. This indicates another type of basement rock composition and the presence of consolidated matter there.Besides, there has been made a more accurate hypocenter determination for further comparison between seismic events and active fault structures. For the central part of Lake Baikal, the distribution of seismicity mainly corresponds to depths of 10–22 km. The situation is different below the Selenga Delta – the only area where seismicity is observed at depths greater than 22 km, – which can be attributed to complex fault interactions.The velocity anomalies discussed herein are confined to reliably identified active faults and correlate well with the distribution of seismicity and gas hydrate structures.

Publisher

Institute of Earth's Crust, Siberian Branch of the Russian Academy of Sciences

Subject

Earth-Surface Processes,Geophysics,Geology,Economic Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3