CHARACTERISTICS OF SELF‐SIMILARITY OF SEISMICITY AND THE FAULT NETWORK OF THE SIKHOTE ALIN OROGENIC BELT AND THE ADJACENT AREAS

Author:

Zakharov V. S.1ORCID,Didenko A. N.2ORCID,Gil’manova G. Z.3ORCID,Merkulova T. V.3ORCID

Affiliation:

1. M.V. Lomonosov Moscow State University; Dubna State University

2. Yu.A. Kosygin Institute of Tectonics and Geophysics, Far East Branch of RAS; Pacific National University

3. Yu.A. Kosygin Institute of Tectonics and Geophysics, Far East Branch of RAS

Abstract

We performed a comprehensive analysis of the characteristics of self‐similarity of seismicity and the fault network within the Sikhote Alin orogenic belt and the adjacent areas. It has been established that the main features of seismicity are controlled by the crustal earthquakes. Differentiation of the study area according to the density of earthquake epicenters and the fractal dimension of the epicentral field of earthquakes (De) shows that the most active crustal areas are linked to the Kharpi‐Kur‐Priamurye zone, the northern Bureya massif and the Mongol‐Okhotsk folded system. The analysis of the earthquake recurrence plot slope values reveals that the highest b‐values correlate with the areas of the highest seismic activity of the northern part of the Bureya massif and, to a less extent, of the Mongol‐Okhotsk folded system. The increased fractal dimension values for the fault network (Df) correlate with the folded systems (Sikhote Alin and Mongol‐Okhotsk), while the decreased values conform to the depressions and troughs (Middle Amur, Uda and Torom). A comparison of the fractal analysis results for the fault network with the recent stress‐strain data gives evidence of their general confineness to the contemporary areas of intense compression. The correspondence between the field of the parameter b‐value for the upper crustal earthquakes and the fractal dimension value for the fault network (Df) suggests a general consistency between the self‐similar earthquake magnitude (energy) distribution and the fractal distribution of the fault sizes. The analysis results demonstrate that the selfsimilarity parameters provide an important quantitative characteristic in seismotectonics and can be used for the neotectonic and geodynamic analyses.

Publisher

Institute of Earth's Crust, Siberian Branch of the Russian Academy of Sciences

Subject

Earth-Surface Processes,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3