Analysis of MHD Richardson Flow Past An Exponentially Stretched Infinite Plate with Suction and Cross-Diffusion Effects

Author:

UKA Uchenna1ORCID,MEBINE Promise2ORCID,AGUNBIADE Samson1ORCID

Affiliation:

1. Babcock University

2. Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria.

Abstract

The present paper investigate the effects of magnetic field (MHD), Richardson and suction on an exponentially expanded infinite plate by studying the convective heat and mass transfer of a non-Newtonian incompressible viscous and electrically conducting fluid. Cross-diffusion impacts are also taken into consideration. The governing partial differential equations (PDEs) are transformed into ordinary differential equations through the application of well-posed similarity transformation variables (STVs). Thus, the transformed dimensionless equations are solved analytically by integrating factor approach and the resulting solutions are simulated with an efficient stability numerical algorithm known as Mathematica. The results are displayed in tabular and graphical forms while the effects of various parameters on the velocity, temperature, concentration, skin–friction coefficient, Nusselt and Sherwood numbers are discussed in details. It was found that velocity falls when magnetic field and suction parameters increase. Also, the temperature and nanoparticle concentration decreases as suction number rises but are enhanced as diffusion-thermo and thermal-diffusivity parameters rise. An increase in Richardson and Prandtl numbers leads to a decrease in skin-friction and upsurge in the rate of heat transportation. The results of this study can be used to advance the design, operation, and performance of various systems encountered in industrial and scientific applications.

Funder

None.

Publisher

Isparta Uygulamali Bilimler Universitesi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3