Causes of drug resistance and glioblastoma relapses

Author:

Mitrofanov A. A.1ORCID,Naskhletashvili D. R.1ORCID,Aleshin V. A.1ORCID,Belov D. M.1ORCID,Bekyashev A. Kh.1ORCID,Karakhan V. B.1ORCID,Sevyan N. V.2ORCID,Prozorenko E. V.2ORCID,Roshchina K. E.1ORCID

Affiliation:

1. N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia

2. I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia

Abstract

Glioblastoma multiform^ is one of the most aggressive malignancies, wich standard of treatment not changed over the past decade, and the average life expectancy from diagnosis to death does not exceed two years in the most optimistic trials. The review examines the features of the glioblastoma microenvironment, its genetic heterogeneity, the development of recurrent glioblastoma, the formation of drug resistance, the influence of the blood-brain barrier and the brain lymphatic system on the development of immunotherapy and targeted therapy. Molecular subgroups of glioblastomas with an assumed prognostic value were analyzed. It was determined that numerous relationships between glioblastoma cells and the microenvironment are aimed at ensuring tumor progression, and also cause a state of reduced effector function of T cells. Data on the development of future molecular-targeted therapies for four types of cancer cells based on their different properties and response to therapy are summarized: primary GSC, RISC cells, and proliferating and postmitotic non-GSC fractions. The penetration of blood-brain barrier with chemotherapeutic drugs and antibodies currently remains the main limitation in the treatment of glioblastoma. The resulting analysis of the causes is reduced to the following conclusions. A detailed understanding of the evolutionary dynamics of tumor progression can provide insight into the related molecular and genetic mechanisms underlying glioblastoma recurrence. The most promising methods of treatment for glioblastoma are combined therapy using immune checkpoint inhibitors in combination with new treatment methods -vaccine therapy, CAR-T-cell therapy and viral therapy. A deeper study of the mechanisms of drug resistance and acquisition resistance, biology and subcloning clonal populations of glioblastoma and its microenvironment, with active consideration of combined trips to the treatment will increase the survival rate of patients, and may lead to stable remission of the disease.

Publisher

Publishing House ABV Press

Subject

Pharmacology (medical),Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology,Otorhinolaryngology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3