Cellular and molecular aspects of degenerative disc disease and potential strategies of biological therapy

Author:

Novikova A. V.1ORCID,Pravdyuk N. G.1ORCID,Shostak N. A.1ORCID

Affiliation:

1. Pirogov Russian National Research Medical University, Ministry of Health of Russia

Abstract

Back pain is one of the main global health problems with a high level of prevalence and patients’ disability. In most cases, it is associated with degenerative spine damage (degenerative disc disease), dorsopathy, discopathy (M51 and M53 according to the International Classification of Diseases, 10th revision), affecting all levels of the intervertebral disc (IVD) (cytological, chemical and biochemical) as a whole as well as biological molecules that regulate homeostasis of the disc intercellular substance (growth factors, pro-inflammatory cytokines, enzymes). A key point in IVD dehydration is that catabolic processes predominate over anabolic ones due to changed gene expression in the corresponding biologically active molecules, disc angiogenesis and neoinnervation of the structures of the fibrous ring and pulpous nucleus. The latter is responsible for chronic pain in patients.Cells supporting homeostasis in nucleus pulpous, chondrocytes, continuously synthesize and restore proteoglycans and hyaluronic acid in nucleus pulpous, restoring shock-absorbing functions of the vertebral-motor segment. Decreased activity and death of chondrocytes in the avascular disc structure is a serious problem for reparative medicine. In accordance with IVD molecular-cellular mechanisms, numerous approaches to treat degenerative disc disease are being developed, each of which, influencing one of the links in the pathogenesis, has a direct or indirect effect on IVD repair.The article describes morphology, pathogenesis and genetics of degenerative disc disease, as well as main modern strategies of biological therapy: tissue engineering, biologically active substances locally used in IVD matrix, including PRP therapy (Platelet Rich Plasma therapy), methods of gene (using the viral vector) and cell therapy, as well as experience in the local use of genetically engineered biological products. Most successful studies are a combination of cell and gene therapy with the use of synthesized matrices.

Publisher

Publishing House ABV Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3