VIRAL DELIVERY USING SCAFFOLDS

Author:

Laevskaya A. A.1,Kosenchuk V. V.1,Yakushov S. I.1,Timashev P. S.1ORCID,Ulasov I. V.1ORCID

Affiliation:

1. I. M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia

Abstract

In experimental oncology there are multiple approaches have been developed to target tumor cells. Many of them are based on scaffolds, a 3D models that mimics the structure of tissue in normal and pathophysiological state. It  is known that to deliver a viral load to target cells, cells-carriers undergo limited differentiation, and premature aging. Since viral agents require cells to be in specific proliferative state, the delivery of the virus to the target cell is the main goal of the functional framework such as scaffold. Over decade, multiple studies demonstrate the production of scaffolds using matrigel, polyalacinic acid, poly-lactide-co-glycolide, vinyl stilbens, or bioactive polymers. Our review will describe the potential benefits of delivering the viral vector using 3D scaffolds for virus-mediated expression of biologically active substances that prevent angiogenesis, neoplasm proliferation, or, conversely, stimulate wound healing. 3D materials such as hydrogels and scaffolds are among the key innovations in the field of material chemistry. Moreover, viral vectors provide specific delivery of genes to target cells. However, the immunogenicity of a viral capsid consisting of viral proteins hinders the clinical use of such vectors widely. These limitations can be surmounted by using scaffolds. Therefore, our review might interest researchers working in the fields of chemistry, materials science and natural sciences, as well as in the field of bioengineering and medical technologies.

Publisher

Publishing House ABV Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3