THE EFFECT OF MULTIAXIAL DEFORMATION ON THE DYNAMICS OF BIODEGRADATION AND CELL COLONIZATION OF ALLOY WE43

Author:

Martynenko N. S.1ORCID,Anisimov N. Yu.2ORCID,Novruzov K. M.2ORCID,Dobatkin S. V.1ORCID,Kiselevskiy M. V.2ORCID,Estrin Yu. Z.3ORCID

Affiliation:

1. A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

2. N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

3. Monash University, Department of Materials Science and Engineering; University of Western Australia, Department of Mechanical Engineering

Abstract

Introduction. The development of materials for bioresorbable implants is an urgent issue in medicine and materials science. Magnesium alloys are promising materials for this purpose. In particular, alloy WE43 (Mg-Y-Nd-Zr) has proven itself well in this field. However, the use of magnesium alloys is limited by a high degradation rate, which is often accompanied with nonuniform corrosion, which negatively affects the load bearing capacity of the product. In addition, the increased degradation rate usually seriously worsens the biocompatibility of magnesium alloys. Therefore, the study of the corrosion resistance of magnesium alloys, as well astheir biocompatibility, is an urgent task.Purpose of the study was to investigate the effect of multiaxial deformation (MAD), aimed at increasing the mechanical characteristics of the alloy WE43, on its biodegradation kinetics, as well as on cell colonization.Materials and methods. The alloy WE43 in two states  – homogenized (WE43 hom) and strengthened by MAD (WE43 MAD) was investigated in this work. The kinetics of biodegradation was investigated on an xCELLigence RTCA Systems analyzer. A method for estimating the volume of hydrogen was used to study the process of gas formation, which was recorded using an automated digital microscope LionheartTM FX. The corrosive medium was a solution based on Dulbecco’s Modified Eagle’s Medium. A culture of mesenchymal multipotent stromal cells was used to study the colonization of the alloy surface by cells.Results. MAD of the alloy WE43 leads to a decrease in the biodegradation rate and the intensity of gas formation. The period of stabilization of biodegradation for the alloy after the MAD is 16 hours versus 3 hours for the alloy after homogenization. In this case, the volume of released hydrogen was 65.0 ± 4.4  mm3H2/mm3 alloy and 211.0 ± ± 21.1 mm3H2/mm3 alloy for the alloy after MAD and homogenization, respectively. MAD improves the biocompatibility of the alloy WE43, stimulating the colonization of mesenchymal multipotent stromal cells.Conclusion. MAD reduces biodegradation and improves the biocompatibility of the alloy WE43, which makes it a promising medical material, including for the purposes of oncoorthopedics

Publisher

Publishing House ABV Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3