Author:
Anjum Zuha,Samo Saifullah,Nighat Arbab,Nisa Akhtar Un,Soomro Muhammad Ali,Alayi Reza
Abstract
In disaster areas, robot manipulators are used to rescue and clearance of sites. Because of the damaged area, they encounter disturbances like obstacles, and limited workspace to explore the area and to achieve the location of the victims. Increasing the degrees of freedom is required to boost the adaptability of manipulators to avoid disturbances, and to obtain the fast desired position and precise movements of the end-effector. These robot manipulators offer a reliable way to handle the barrier challenges since they can search in places that humans can't reach. In this research paper, the 9-DOF robotic manipulator is designed, and an analytical model is developed to examine the system’s behavior in different scenarios. The kinematic and dynamic representation of the proposed model is analyzed to obtain the translation or rotation, and joint torques to achieve the expected position, velocity, and acceleration respectively. The number of degrees may be raised to avoid disturbances, and to obtain the fast desired position and precise movements of the end-effector. The simulation of developed models is performed to ensure the adaptable movement of the manipulators working in distinct configurations and controlling their motion thoroughly and effectively. In the proposed configuration the joints can easily be moved to achieve the desired position of the end-effector and the results are satisfactory. The simulation results show that the redundant manipulator achieves the victim location with various configurations of the manipulator. Results reveal the effectiveness and efficacy of the proposed system.
Publisher
Universitas Muhammadiyah Yogyakarta
Subject
Artificial Intelligence,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献