Wireless Sensor Network Optimization Using Genetic Algorithm

Author:

B. Alnajjar Aseel,M. Kadim Azhar,Jaber Ruaa Abdullah,Hasan Najwan Abed,Ahmed Ehsan Qahtan,Altaei Mohammed Sahib Mahdi,L. Khalaf Ahmed

Abstract

Wireless Sensor Network (WSN) is a high potential technology used in many fields (agriculture, earth, environmental monitoring, resources union, health, security, military, and transport, IoT technology). The band width of each cluster head is specific, thus, the number of sensors connected to each cluster head is restricted to a maximum limit and exceeding it will weaken the connection service between each sensor and its corresponding cluster head. This will achieve the research objective which refers to reaching the state where the proposed system energy is stable and not consuming further more cost. The main challenge is how to distribute the cluster heads regularly on a specified area, that’s why a solution was supposed in this research implies finding the best distribution of the cluster heads using a genetic algorithm. Where using an optimization algorithm, keeping in mind the cluster heads positions restrictions, is an important scientific contribution in the research field of interest. The novel idea in this paper is the crossover of two-dimensional integer encoded individuals that replacing an opposite region in the parents to produce the children of new generation. The mutation occurs with probability of 0.001, it changes the type of 0.05 sensors found in handled individual. After producing more than 1000 generations, the achieved results showed lower value of fitness function with stable behavior. This indicates the correct path of computations and the accuracy of the obtained results. The genetic algorithm operated well and directed the process towards improving the genes to be the best possible at the last generation. The behavior of the objective function started to be regular gradually throughout the produced generations until reaching the best product in the last generation where it is shown that all the sensors are connected to the nearest cluster head. As a conclusion, the genetic algorithm developed the sensors’ distribution in the WSN model, which confirms the validity of applying of genetic algorithms and the accuracy of the results.

Publisher

Universitas Muhammadiyah Yogyakarta

Subject

Artificial Intelligence,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3