Enhancing Fault Detection in Wireless Sensor Networks Through Support Vector Machines: A Comprehensive Study

Author:

Mardenov Yerik,Adamova AigulORCID,Zhukabayeva TamaraORCID,Othman Mohamed

Abstract

The Wireless Sensor Network (WSN) consists of many sensors that are distributed in a specific area for the purpose of monitoring physical conditions. Factors such as hardware limitations, limited resources, unfavourable WSN deployment environment, and the presence of various attacks on nodes can lead to the presence of Faulty Nodes in a WSN. This raises the problem of detecting Faulty Nodes and avoiding Data loss. Detecting Faulty Nodes in real-world scenarios will improve the quality of a WSN. The research was aimed at developing an algorithm to determine the location of Faulty Nodes in a WSN. The algorithm uses characteristics of Machine Learning and Support Vector Machines (SVM), which use the classification of Data into true and false. A Mathematical Model for determining Faulty Nodes using the SVM is considered. A methodology for detecting a Faulty Node is demonstrated, which consists of Data Collection, Feature Extraction, Training, and Testing the Model. The Results of simulated experiments that were conducted with different numbers of nodes from 50 to 320 are shown. The Model is tested on Data very similar to real-world sensing Data to evaluate the ability of the Model to detect failed nodes and calculate training and testing errors. As a result, the training error is 4.6667%, the accuracy of detecting faulty nodes was 97%. The simulation results demonstrate the high stability of the proposed algorithm and are suitable for network environments with irregular node distribution or coverage gaps. In real scenarios, it can provide a high level of uninterrupted operation of the WSN and lossless data transmission. Shortcomings and prospects in research on fault detection in WSN, such as studying real-world hardware issues and its security, were presented.

Publisher

Universitas Muhammadiyah Yogyakarta

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Attack Detection in IoT using RF and ANN;2024 IEEE 4th International Conference on Smart Information Systems and Technologies (SIST);2024-05-15

2. Machine Learning Algorithms for Intrusion Detection in IoT-enabled Smart Homes;Procedia Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3