Modeling the electron temperature distribution in F2 region of high-latitude ionosphere for winter solstice conditions
Author:
Голиков Иннокентий1, Golikov Innokentiy2, Гололобов Артем3, Gololobov Artem4, Попов Василий3, Popov Vasiliy4
Affiliation:
1. Институт космофизических исследований и аэрономии им. Ю.Г. Шафера СО РАН 2. Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS 3. Северо-Восточный федеральный университет им. М.К. Аммосова 4. North-Eastern Federal University
Abstract
Using the three-dimensional model of the high-latitude ionosphere in Euler variables, which takes into account the mismatch between geographical and geomagnetic poles, we study the behavior of the electron temperature Te in the F2 region as a function of universal time. We present results of the numerical modeling of spatial-temporal distribution of electron temperature in the F2 region for winter solstice, minimum solar activity, and moderate geomagnetic activity. The electron temperature distribution in the F2 region of the high-latitude ionosphere in winter is shown to be characterized by a Te increase in dawn and dusk sectors. Further, the mismatch between the poles leads to regular longitudinal features in Te distribution during Earth’s daily rotation. Thus, at 05 UT, when the Eastern Hemisphere is illuminated, the elevated Te zone is formed only in the dawn sector, and at 17 UT, when the Western Hemisphere is illuminated, such zones are observed in both the sectors. We discuss reasons for the formation of the regions with elevated electron temperature depending on the universal time. The results of numerical experiments are compared with similar results obtained with other models.
Publisher
Infra-M Academic Publishing House
Subject
Space and Planetary Science,Atmospheric Science,Geophysics
Reference24 articles.
1. Голиков И.А., Гололобов А.Ю., Попов В.И. Численное моделирование теплового режима высокоширотной ионосферы // Вестник Северо-Восточного федерального университета. 2012. Т. 9, № 3. С. 22–28., Banks P.N., Kockarts G. Aeronomy. Part A, B. New York: Academic Press, 1973. 785 p. 2. Гололобов А.Ю., Голиков И.А., Попов В.И. Моделирование высокоширотной ионосферы с учетом несовпадения географического и геомагнитного полюсов // Вестник Северо-Восточного федерального университета. 2014. Т. 11, № 2. С. 46–54., Bilitza D. Altadill D., Zhang Y., C. Mertens, V. Truhlik, P. Richards, L.-A. McKinnell, B. Reinisch. The International Reference Ionosphere 2012 — a model of international collaboration. J. Space Weather Space Clim., 2014, vol. A07, pp. 1. DOI: 10.1051/swsc/2014004. 3. Клименко В.В., Кореньков Ю.Н., Намгаладзе А.А. и др. Численное моделирование «горячих пятен» в ионос-фере Земли // Геомагнетизм и аэрономия. 1991. Т. 31, № 3. С. 554–557., Chapman S. The absorption and dissociative of ionizing effect of monochromatic radiation in an atmosphere on a rotation Earth. Proc. Phys. Soc. 1931, vol. 43, no. 5, pp. 483–501. DOI: 10.1088/0959-5309/43/5/302. 4. Колесник А.Г., Голиков И.А. Механизм формирования главного ионосферного провала области F // Геомагнетизм и аэрономия. 1983. Т. 23, № 4. С. 909–914., David M., Schunk R.W., Sojka J.J. The effect of downward electron heat flow and electron cooling processes in the high-latitude ionosphere. J. Atm. Solar-Terr. Phys. 2011, vol. 73, no. 16, pp. 2399–2409. DOI: 10.1016/j.jastp.2011. 5. Колесник А.Г., Голиков И.А., Чернышев В.И. Математические модели ионосферы. Томск: МГП «Раско», 1993. 240 с., Fang X., Randall C., Lummerzheim D., S.C. Solomon, M.J. Mills, D.R. Marsh, C.H. Jackman, Wenbin Wang, Gang Lu. Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons. J. Geophys. Res. 2008, vol. 113, pp. A09311. DOI: 10.1029/2008JA013384.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|