Comparative Analysis of Approaches to Regulation and Monitoring of Workers for Internal Radiation Exposure

Author:

Molokanov A.1,Kukhta B.2,Maksimova E.3

Affiliation:

1. A.I. Burnasyan Federal Medical Biophysical Center (FMBC) FMBA

2. A.I. Burnasyan Federal Medical Biophysical Center of FMBA

3. A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia.

Abstract

Purpose: Harmonization and improvement of the system for regulating the internal radiation exposure of workers and the basic requirements for ensuring radiation safety with international requirements and recommendations. Material and methods: Issues related to the development of approaches to regulation and monitoring of workers for internal radiation exposure in the process of evolution of the ICRP recommendations and the national radiation safety standards, are considered. The subject of analysis is the standardized values: dose limits for workers and permissible levels as well as directly related methods of monitoring of workers for internal radiation exposure, whose purpose is to determine the degree of compliance with the principles of radiation safety and regulatory requirements, including non-exceeding the basic dose limits and permissible levels. The permissible levels of inhalation intake of insoluble compounds (dioxide) of plutonium-239 are considered as a numerical example. Results: Based on the analysis of approaches to the regulation and monitoring of workers for internal radiation exposure for the period from 1959 to 2019, it is shown that a qualitative change in the approach occurred in the 1990s. It was due to a decrease in the number of standardized values by introducing a single dose limit for all types of exposure: the effective dose E, which takes into account the different sensitivity of organs and tissues for stochastic radiation effects (WT), using the previously accepted concepts of the equivalent dose H and groups of critical organs. From the analysis it follows that the committed effective dose is a linear transformation of the intake, linking these two quantities by the dose coefficient, which does not depend on the time during which the intake occurred, and reflects certain exposure conditions of the radionuclide intake (intake routes, parameters of aerosols and type of radionuclide compounds). It was also shown that the reference value of the function z(t) linking the measured value of activity in an organ (tissue) or in excretion products with the committed effective dose for a reference person, which is introduced for the first time in the publications of the ICRP OIR 2015-2019, makes it possible to standardize the method of measuring the normalized value of the effective dose. Based on the comparison of the predicted values of the lung and daily urine excretion activities following constant chronic inhalation intake of insoluble plutonium compounds at a rate equal annual limit of intake (ALI) during the period of occupational activity 50 years it was shown that the modern biokinetic models give a slightly lower level (on average 2 times) of the lungs exposure compared to the models of the previous generation and a proportionally lower level (on average 1.4 times) of plutonium urine excretion for the standard type of insoluble plutonium compounds S. However, for the specially defined insoluble plutonium compound, PuO2, the level of plutonium urine excretion differs significantly downward (on average 11.5 times) compared to the models of the previous generation. Conclusion: With the practical implementation of new ICRP OIR models, in particular for PuO2 compounds, additional studies should be carried out on the behavior of insoluble industrial plutonium compounds in the human body. Besides, additional possibilities should be used to determine the intake of plutonium by measuring in the human body the radionuclide Am-241, which is the Pu-241 daughter. To determine the plutonium urine excretion, the most sensitive measurement techniques should be used, having a decision threshold about fractions of mBq in a daily urine for S-type compounds and an order of magnitude lower for PuO2 compounds. This may require the development and implementation in monitoring practice the plutonium-DTPA Biokinetic Model.

Publisher

Infra-M Academic Publishing House

Subject

Nuclear Energy and Engineering

Reference31 articles.

1. Нормы радиационной безопасности НРБ-99/2009. Гигиени¬ческие нормативы СП 2.6.1.2523-09. М. 2009. 100 с. [Radiation safety standards NRB-99/2009. Hygienic standards SP 2.6.1.2523- 09. Moscow. 2009. 100 p. (In Russ.)]., Normy radiacionnoy bezopasnosti NRB-99/2009. Gigieni¬cheskie normativy SP 2.6.1.2523-09. M. 2009. 100 s. [Radiation safety standards NRB-99/2009. Hygienic standards SP 2.6.1.2523- 09. Moscow. 2009. 100 p. (In Russ.)].

2. Панфилов А.П. Эволюция системы обеспечения радиационной безопасности атомной отрасли страны и ее современное состояние. Радиация и риск. 2016. Том 25. № 1. [Panfilov AP. Evolution of the radiation safety system of the country's nuclear industry and its current state. Radiation and risk. 2016; 25(1):47-64 (In Russ.)], Panfilov A.P. Evolyuciya sistemy obespecheniya radiacionnoy bezopasnosti atomnoy otrasli strany i ee sovremennoe sostoyanie. Radiaciya i risk. 2016. Tom 25. № 1. [Panfilov AP. Evolution of the radiation safety system of the country's nuclear industry and its current state. Radiation and risk. 2016; 25(1):47-64 (In Russ.)]

3. Нормы радиационной безопасности НРБ-76/87 и Основные санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучений ОСП-72/87. – М. 1988. 160 с. [Radiation safety standards NRB-76/87 and Basic sanitary rules for working with radioactive substances and other sources of ionizing radiation OSP-72/87. Moscow. 1988. 160 p. (In Russ.)]., Normy radiacionnoy bezopasnosti NRB-76/87 i Osnovnye sanitarnye pravila raboty s radioaktivnymi veschestvami i drugimi istochnikami ioniziruyuschih izlucheniy OSP-72/87. – M. 1988. 160 s. [Radiation safety standards NRB-76/87 and Basic sanitary rules for working with radioactive substances and other sources of ionizing radiation OSP-72/87. Moscow. 1988. 160 p. (In Russ.)].

4. Нормы радиационной безопасности НРБ-96. Гигиенические нормативы ГН 2.6.1.054-96. Moscow. 1996. [Radiation safety standards NRB-96. Hygienic standards GN 2.6.1.054-96. Moscow. 1996. (In Russ.)]., Normy radiacionnoy bezopasnosti NRB-96. Gigienicheskie normativy GN 2.6.1.054-96. Moscow. 1996. [Radiation safety standards NRB-96. Hygienic standards GN 2.6.1.054-96. Moscow. 1996. (In Russ.)].

5. ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4)., ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3