Diagnostics of auroral oval boundaries on the basis of the magnetogram inversion technique
Author:
Лунюшкин Сергей1, Lunyushkin Sergey2, Пенских Юрий1, Penskikh Yury2
Affiliation:
1. Институт солнечно-земной физики СО РАН 2. Institute of Solar Terrestrial Physics SB RAS
Abstract
It is shown that the convection reversal boundary is a fundamental parameter of the magnetosphere-ionosphere coupling, which determines a strong analogy between the electrostatic potential of the ionosphere and the equivalent current function in the dipole geomagnetic field approximation and the uniform ionospheric conductance. We have developed a new ground-based method for automatically diagnosing boundaries of the auroral oval using output data obtained with the magnetogram inversion technique (MIT). Using maps of the current function and field-aligned currents, calculated at the first stage of MIT with uniform ionospheric conductance, we determine the convection reversal boundary, polar cap boundary, equatorial boundary of the auroral oval, and line of maximum density of auroral electrojets. These parameters have previously been determined by a visual-manual method: analyzing maps of field-aligned and equivalent currents on the monitor screen and carrying out predetermined boundaries with the mouse — this took a very long time (weeks and months). The comparison between manually and automatically obtained boundaries has shown that the correlation coefficient between the two boundaries is, on average, 0.85, and the root-mean-square deviation does not exceed 2° in latitude. By providing an adequate accuracy for the boundary determination, the automatic method reduces the time for map processing by a factor of 2–3 (to minutes and hours), releasing a researcher from laborious visual work. The new method is implemented as one of the important modules in the updated MIT software.
Publisher
Infra-M Academic Publishing House
Subject
Space and Planetary Science,Atmospheric Science,Geophysics
Reference58 articles.
1. Akasofu S.I. Polar and Magnetospheric Substorms. Dordrecht, Holland, Springer Netherlands, 1968, 280 p. DOI: 10.1007/978-94-010-3461-6., Akasofu S.I. Polar and Magnetospheric Substorms. Dordrecht, Holland, Springer Netherlands, 1968, 280 p. DOI: 10.1007/978-94-010-3461-6. 2. Akasofu S.I. Physics of Magnetospheric Substorms. Dordrecht, Holland, Springer Netherlands, 1977, 617 p. DOI: 10.1007/978-94-010-1164-8_1., Akasofu S.I. Physics of Magnetospheric Substorms. Dordrecht, Holland, Springer Netherlands, 1977, 617 p. DOI: 10.1007/978-94-010-1164-8_1. 3. Alfvén H. Cosmic plasma. Dordrecht, Holland, Springer Netherlands, 1981, 168 p. DOI: 10.1007/978-94-009-8374-8., Alfvén H. Cosmic plasma. Dordrecht, Holland, Springer Netherlands, 1981, 168 p. DOI: 10.1007/978-94-009-8374-8. 4. Axford W.I., Hines C.O. A Unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys. 1961, vol. 39, no. 10, pp. 1433–1464. DOI: 10.1139/p61-172., Axford W.I., Hines C.O. A Unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys. 1961, vol. 39, no. 10, pp. 1433–1464. DOI: 10.1139/p61-172. 5. Baker D.N., Peterson W.K., Eriksson S., Li X., Blake J.B., Burch J.L., Daly P.W., Dunlop M.W., Korth A., Donovan E., Friedel R., Fritz T.A., Frey H.U., Mende S.B., Roeder J., Singer H.J. Timing of magnetic reconnection initiation during a global magnetospheric substorm onset. Geophys. Res. Lett. 2002, vol. 29, no. 24, pp. 2190. DOI: 10.1029/2002GL015539., Baker D.N., Peterson W.K., Eriksson S., Li X., Blake J.B., Burch J.L., Daly P.W., Dunlop M.W., Korth A., Donovan E., Friedel R., Fritz T.A., Frey H.U., Mende S.B., Roeder J., Singer H.J. Timing of magnetic reconnection initiation during a global magnetospheric substorm onset. Geophys. Res. Lett. 2002, vol. 29, no. 24, pp. 2190. DOI: 10.1029/2002GL015539.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|