DIAMAGNETIC PLASMOIDS AS PART OF DIAMAGNETIC STRUCTURES OF THE SLOW SOLAR WIND AND THEIR IMPACT ON EARTH’S MAGNETOSPHERE

Author:

Parhomov Vladimir1,Eselevich Viktor2,Eselevich Maxim2,Dmitriev Aleksey3,Vedernikova Tatyana1

Affiliation:

1. Baikal State University

2. Institute of Solar Terrestrial Physics SB RAS

3. Skobeltsyn Institute of Nuclear Physics, Moscow State University

Abstract

We have shown that diamagnetic structures (DSs), which form the basis of the slow quasi-stationary solar wind (SW), are observed in Earth’s orbit as a sequence of DSs of various scales. The analysis of this phenomenon indicates that diamagnetic plasmoids in SW, whose concept was introduced by Karlsson in 2015, are identical to small-scale DSs. We have found that the impact of a sequence of DSs in the slow SW on Earth’s magnetosphere causes an increase in geomagnetic activity. Isolated DSs generate short-term magnetic disturbances whose duration is approximately equal to the DS duration. Hence, a sequence of DSs can cause sawtooth substorms. We emphasize that the interaction of DS in the slow SW under northward interplanetary magnetic field can be associated with penetration of DS high-density plasma into the magnetosphere.

Publisher

Infra-M Academic Publishing House

Subject

Space and Planetary Science,Atmospheric Science,Geophysics

Reference30 articles.

1. Borrini G., Wilcox J.M., Gosling J.T., Bame S.J., Feldman W.C. Solar wind helium and hydrogen structure near the helio-spheric current sheet; a signal of coronal streamer at 1 AU. J. Geophys. Res. 1981, vol. 86, p. 4565., Borrini G., Wilcox J.M., Gosling J.T., Bame S.J., Feldman W.C. Solar wind helium and hydrogen structure near the helio-spheric current sheet; a signal of coronal streamer at 1 AU. J. Geophys. Res. 1981, vol. 86, p. 4565.

2. Bostick, W.H. Experimental study of ionized matter projected across a magnetic field. Phys. Rev. 1956, vol. 104, pp. 292–299., Bostick, W.H. Experimental study of ionized matter projected across a magnetic field. Phys. Rev. 1956, vol. 104, pp. 292–299.

3. Eselevich M.V., Eselevich V.G. Fractal structure of the heliospheric plasma sheet in the Earth’s orbit. Geomagnetism and Aeronomy. 2005, vol. 45, no. 3, pp. 326–336., Eselevich M.V., Eselevich V.G. Fractal structure of the heliospheric plasma sheet in the Earth’s orbit. Geomagnetism and Aeronomy. 2005, vol. 45, no. 3, pp. 326–336.

4. Eselevich, M.V., Eselevich V.G. Manifestations of the ray structure of the coronal streamer belt in the form of sharp peaks of the solar wind plasma density in the Earth’s orbit. Geomagnetism and Aeronomy. 2006, vol. 46, iss. 6, pp. 770–782., Eselevich, M.V., Eselevich V.G. Manifestations of the ray structure of the coronal streamer belt in the form of sharp peaks of the solar wind plasma density in the Earth’s orbit. Geomagnetism and Aeronomy. 2006, vol. 46, iss. 6, pp. 770–782.

5. Eselevich V.G., Fainshtein V.G. The heliospheric current sheet (HCS) and high-speed solar wind: interaction effects. Planetary Space Sci. 1991. V. 39. P. 737–744., Eselevich V.G., Fainshtein V.G. The heliospheric current sheet (HCS) and high-speed solar wind: interaction effects. Planetary Space Sci. 1991. V. 39. P. 737–744.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3