Recognition of geomagnetic storms from time series of matrix observations with the muon hodoscope URAGAN using neural networks of deep learning

Author:

Getmanov Viktor12,Gvishiani Alexei34ORCID,Soloviev Anatoly12ORCID,Zajtsev Konstantin5,Dunaev Maksim5,Ehlakov Eduard5

Affiliation:

1. Geophysical Center of RAS

2. Schmidt Institute of Physics of the Earth, RAS

3. Geophysical Center of the Russian Academy of Sciences

4. Schmidt Institute of the Physics of the Earth Russian Academy of Sciencies

5. National Reasearch Nuclear University MEPHI

Abstract

We solve the problem of recognizing geomagnetic storms from matrix time series of observations with the URAGAN muon hodoscope, using deep learning neural networks. A variant of the neural network software module is selected and its parameters are determined. Geomagnetic storms are recognized using binary classification procedures; a decision-making rule is formed. We estimate probabilities of correct and false recognitions. The recognition of geomagnetic storms is experimentally studied; for the assigned Dst threshold Yᴅ₀=–45 nT we obtain acceptable probabilities of correct and false recognitions, which amount to β=0.8212 and α=0.0047. We confirm the effectiveness and prospects of the proposed neural network approach.

Publisher

Infra-M Academic Publishing House

Reference34 articles.

1. Astapov I.I., Barbashina N.S., Borog V.V., Dmitrieva A.N, Shulzhenko I.A., Shutenko V.V., et al. Muon Diagnostics of Earth’s Magnetosphere and Atmosphere. Moscow, MEPhI, 2014. 132 p. (In Russian)., Astapov I.I., Barbashina N.S., Borog V.V., Dmitrieva A.N, Shulzhenko I.A., Shutenko V.V., et al. Muon Diagnostics of Earth’s Magnetosphere and Atmosphere. Moscow, MEPhI, 2014. 132 p. (In Russian).

2. Ba J.L., Kingma D.P. Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. 2015, pp. 1-15., Ba J.L., Kingma D.P. Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. 2015, pp. 1-15.

3. Barkhatov N.A. Artificial Neural Networks in Solar-Terrestrial Physics. Nizhny Novgorod, Povolzh’e, 2010. 707 p. (In Russian)., Barkhatov N.A. Artificial Neural Networks in Solar-Terrestrial Physics. Nizhny Novgorod, Povolzh’e, 2010. 707 p. (In Russian).

4. Belov A.V., Gvishiani A.D., Getmanov V.G., Kovylyaeva A.A., Solovyev A.A., Chinkin V.E., et al. Identification of geomagnetic storms based on neural model estimates of Dst indices. J. Computer and Systems Sciences International. 2022, no. 1, pp. 56-66. (In Russian)., Belov A.V., Gvishiani A.D., Getmanov V.G., Kovylyaeva A.A., Solovyev A.A., Chinkin V.E., et al. Identification of geomagnetic storms based on neural model estimates of Dst indices. J. Computer and Systems Sciences International. 2022, no. 1, pp. 56-66. (In Russian).

5. Berngardt O.N. The first comparative analysis of meteor echo and sporadic scattering identified by a self-learning neural network in EKB and MAGW ISTP SB RAS radar data Solar-Terr. Phys. 2022, vol. 8, iss. 4, pp. 63-72., Berngardt O.N. The first comparative analysis of meteor echo and sporadic scattering identified by a self-learning neural network in EKB and MAGW ISTP SB RAS radar data Solar-Terr. Phys. 2022, vol. 8, iss. 4, pp. 63-72.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3