Affiliation:
1. Southern Federal University, Russia
2. Don State Technical University, Russia
Abstract
The authors have previously studied two - dimensional Fredholm integral operators with homogeneous kernels of fiber - singular type. For this class of operators, the symbolic calculus is built using the theory of biloc al operators by V. Pilidi, and Fredholm criterion is formulated through the inversibility of t wo families: the family of one - dimensional convolution operators, and the family of one - dimensional singular integral operators with continuous coefficients. The aim of this work is to study composite two - dimensional integral operators with homogeneous ker nels of fiber singular type analogous to Simonenko’s continual convolution integral operators. This investigation is a part of a more general study of algebra of operators with homogeneous kernels which layers are singular operat ors with piecewise continuo us coefficients. For the considered operators, the symbolic calculus and the necessary and sufficient Fredholm conditions are obtained.
Publisher
FSFEI HE Don State Technical University
Reference13 articles.
1. Karapetiants, N., Samko, S. Equations with Involutive Operators. Boston, Basel, Berlin : Birkhauser, 2001, 427 p.
2. Avsyankin, O. G. Ob algebre parnykh integral'nykh operatorov s odnorodnymi yadrami / O. G. Avsyankin // Matematicheskie zametki. — 2003. — T. 73, vyp. 4. — C. 483‒493.
3. Deundyak, V. M. Mnogomernye integral'nye operatory s odnorodnymi yadrami kompaktnogo tipa i mul'tiplikativno slabo ostsilliruyushchimi koeffitsientami / V. M. Deundyak // Matematicheskie zametki. — 2010. — T. 87, № 5. — S. 713‒729.
4. Deundyak, V. M. Ob integral'nykh operatorakh s odnorodnymi yadrami posloino singulyarnogo tipa v prostranstve 2 p L R / V. M. Deundyak, E. A. Stepanyuchenko // Vestnik Don. gos. tekhn. un-ta. — 2007. — T. 7, № 2 (32). — S. 161‒168.
5. Simonenko, I. B. Lokal'nyi metod v teorii invariantnykh otnositel'no sdviga operatorov ikh ogibayushchikh / I. B. Simonenko. — Rostov-na-Donu : TsVVR, 2007. — 120 s. 6. Pilidi, V. S. O bisingulyarnom uravnenii v prostranstve pL / V. S. Pilidi // Matematicheskie issledovaniya. — 1972. — T. 7, № 3. — S. 167‒175.