Affiliation:
1. Institute of Solar-Terrestrial Physics SB RAS
2. Institute of Solar Terrestrial Physics SB RAS
Abstract
The spatial-temporal picture of appearance of active regions and the relationship of their appearance with the structure and development of a large-scale magnetic field were studied during the transition from solar cycle 24 to 25. During this period, solar activity is low, and therefore the dynamics of a large-scale magnetic field in the appearance of new active regions is most noticeable. We have used SDO/HMI data on the longitudinal magnetic field to determine the time and heliographic coordinates of the origin of an active region, as well as daily WSO maps (Wilcox Solar Observatory) to compare with the structure of the large-scale magnetic field. We have obtained the following results. During the transition from one cycle to another, new active regions appeared in half of the cases in the polarity inversion line of the large-scale magnetic field, and almost exclusively at the Hale boundaries in the corresponding hemispheres and solar cycles. In other cases, the places of appearance were unipolar regions of the large-scale magnetic field without a clear advantage in the location of the field regions according to the Hale law. The formation of active regions is preceded or accompanied by changes in the structure of the large-scale magnetic field. At the same time, in the fine structure of the magnetic field in the photosphere we can observe an increase in the magnetic field network on a spatial scale of the size of supergranules and larger, as well as the appearance of small regions of a new magnetic field of both polarities. The appearing active regions were concentrated in two narrow longitudinal zones that covered both hemispheres of the Sun. The new cycle began in the same longitudinal zones, where the activity of the old cycle decayed.
Publisher
Infra-M Academic Publishing House
Subject
Space and Planetary Science,Atmospheric Science,Geophysics
Reference20 articles.
1. Bai T., Hoeksema J.T., Scherrer P.H. Hot spots and active longitudes: organization of solar activity as a probe of the interior. Proc. the 4th SOHO Workshop on Helioseismology. ESA SP. 1995, vol. 376, p. 113., Bai T., Hoeksema J.T., Scherrer P.H. Hot spots and active longitudes: organization of solar activity as a probe of the interior. Proc. the 4th SOHO Workshop on Helioseismology. ESA SP. 1995, vol. 376, p. 113.
2. Bappu M.K.V., Grigorjev V.M., Stepanov V.E. On the development of magnetic fields in the active regions. Solar Phys. 1968, vol. 4, pp. 409–421. DOI: 10.1007/BF00147906., Bappu M.K.V., Grigorjev V.M., Stepanov V.E. On the development of magnetic fields in the active regions. Solar Phys. 1968, vol. 4, pp. 409–421. DOI: 10.1007/BF00147906.
3. Benevolenskaya E.E., Hoeksema J.T., Kosovichev A.G., Scherrer P.H. The interaction of new and old magnetic fluxes at the beginning of solar cycle 23. Astrophys. J. 1999, vol. 517, pp. L163–L166. DOI: 10.1086/312046., Benevolenskaya E.E., Hoeksema J.T., Kosovichev A.G., Scherrer P.H. The interaction of new and old magnetic fluxes at the beginning of solar cycle 23. Astrophys. J. 1999, vol. 517, pp. L163–L166. DOI: 10.1086/312046.
4. Bumba V., Howard R. A study of the development of active regions on the Sun. Astrophys. J. 1965, vol. 141, pp. 1492–1501. DOI: 10.1086/148237., Bumba V., Howard R. A study of the development of active regions on the Sun. Astrophys. J. 1965, vol. 141, pp. 1492–1501. DOI: 10.1086/148237.
5. Duvall T.L.Jr., Wilcox J.M., Svalgaard L., Scherrer P.H., McIntosh P.S. Comparison of Hα synoptic charts with the large-scale solar magnetic field as observed at Stanford. Solar Phys. 1977, vol. 55, pp. 63–68. DOI: 10.1007/BF00150874., Duvall T.L.Jr., Wilcox J.M., Svalgaard L., Scherrer P.H., McIntosh P.S. Comparison of Hα synoptic charts with the large-scale solar magnetic field as observed at Stanford. Solar Phys. 1977, vol. 55, pp. 63–68. DOI: 10.1007/BF00150874.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献