RESOURCE NETWORKS WITH LIMITATIONS ON VERTEX CAPACITIES

Author:

Жилякова Людмила1,Zhilyakova Liudmila2

Affiliation:

1. ИПУ РАН

2. ICS RAS

Abstract

Work is continuation of studies whose results are published in the monograph "Theory of resource networks" — M.: RIOR: INFRA-M, 2017. The resource network is a dynamic graph model in which vertices at discrete time homogeneous resource exchange through channels with limited bandwidth capabilities. At each step, the vertices give the resource to one of the two rules with the threshold switch, depending on its quantity. In the original model all the vertices have an unlimited capacity. Ie can take and store an arbitrary amount of the resource. In the model proposed in the present work, the vertices, the storage resource (attractors) have limitations on capacity. This creates the possibility of accumulation of the resource in the set of vertices, called secondary attractors. Investigated the inhomogeneous Markov chain generated by the process of redistribution of the resource. The book is intended for specialists in graph theory and operations research, students, masters and post-graduate students studying in various areas of discrete mathematics and computer science.

Publisher

Publishing Center RIOR

Reference30 articles.

1. Агаев Р.П., Чеботарев П.Ю. Метод проекции в задаче о консенсусе и регуляризованный предел степеней стохастической матрицы // Автоматика и телемеханика. – 2011. – №12. – С. 38–59., Agaev R.P., Chebotarev P.Yu. Metod proekcii v zadache o konsensuse i regulyarizovannyy predel stepeney stohasticheskoy matricy // Avtomatika i telemehanika. – 2011. – №12. – S. 38–59.

2. Агаев Р.П., Чеботарев П.Ю. Сходимость и устойчивость в задачах со-гласования характеристик (обзор базовых результатов) // Управление большими системами. – 2010. – №30.1 – С. 470–505., Agaev R.P., Chebotarev P.Yu. Shodimost' i ustoychivost' v zadachah so-glasovaniya harakteristik (obzor bazovyh rezul'tatov) // Upravlenie bol'shimi sistemami. – 2010. – №30.1 – S. 470–505.

3. Адельсон-Вельский Г.М., Диниц Е.А., Карза¬нов А.В. Потоковые алгоритмы. – М.: Наука, 1975. – 119 с., Adel'son-Vel'skiy G.M., Dinic E.A., Karza¬nov A.V. Potokovye algoritmy. – M.: Nauka, 1975. – 119 s.

4. Ананько Е.А., Колпаков Ф.А., Подколодная О.А., Игнатьева Е.В., Го-рячковская Т.Н., Степаненко И.Л., Колчанов Н.А. Генные сети. 1999. – [Электронный ресурс] – URL: http://www.bionet.nsc.ru/ICIG/session/1999/rus/part1/1_18.pdf (дата обращения 09.01.2017)., Anan'ko E.A., Kolpakov F.A., Podkolodnaya O.A., Ignat'eva E.V., Go-ryachkovskaya T.N., Stepanenko I.L., Kolchanov N.A. Gennye seti. 1999. – [Elektronnyy resurs] – URL: http://www.bionet.nsc.ru/ICIG/session/1999/rus/part1/1_18.pdf (data obrascheniya 09.01.2017).

5. Базенков Н.И., Губанов Д.А. Обзор информационных систем анализа социальных сетей // Управление большими системами. – 2013. – №41. – С. 357–394., Bazenkov N.I., Gubanov D.A. Obzor informacionnyh sistem analiza social'nyh setey // Upravlenie bol'shimi sistemami. – 2013. – №41. – S. 357–394.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3