THREE-DIMENSIONAL CONTACT PROBLEM FOR A TRANSVERSELY ISOTROPIC SOLID

Author:

Pozharskiy Dmitry Alexandrovich1,Davtyan David Borisovich1

Affiliation:

1. Don State Technical University.

Abstract

The spatial contact problem with an unknown contact domain is investigated for a transversely isotropic elastic half-space the boundary of which is perpendicular to the planes of isotropy. For a circular punch, the contact zone, as a rule, is not a circle because the stiffness of the elastic solid boundary depends on the direction. The problem is reduced to an integral equation (IE) with respect to the contact pressure the kernel of which does not include quadratures. Galanov’s numerical method which makes it possible to determine simultaneously the contact zone and the contact pressure is used to solve the IE. The simple form of the IE kernel allows regularizing it by using a parameter which depends on mesh intervals as well as on anisotropy parameters. A well-known exact solution to a punch in the form of an elliptical paraboloid is used to verify the computer program. The numerical analysis has been made for different transversely isotropic materials contacting with conical and pyramidal punches.

Publisher

FSFEI HE Don State Technical University

Reference5 articles.

1. Ding, H., Chen, W., Zhang, L. Elasticity of transversely isotropic materials. Dordrecht : Springer, 2006, 435 p.

2. Fabrikant, V. I. Non-traditional contact problem for transversely isotropic half-space. Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, no. 2, pp. 151–170.

3. Davtyan, D. B., Pozharskiy, D. A. Deystviye polosovogo shtampa na transversalno-izotropnoye poluprostranstvo. [Band stamp effect on transversally isotropic half-space.] Prikladnaya matematika i mexanika, 2012, vol. 76, iss. 5, pp. 783–794 (in Russian).

4. Galanov, B. A. Metod granichnykh uravneniy tipa Gammershteyna dlya kontaktnykh zadach teorii uprugosti v sluchaye neizvestnykh oblastey kontakta. [Hammerstein boundary equation method for elasticity theory contact problems in case of contact unknown domains.] Prikladnaya matematika i mekhanika, 1985, vol. 49, iss. 5, pp. 827–835 (in Russian).

5. Alexandrov, V. M., Pozharskiy, D. A. Neklassicheskiye prostranstvennyye zadachi mekhaniki kontaktnykh vzaimodeystviy uprugikh tel. [Nonclassical spatial problems of elastic bodies contact inter-action mechanics.] Moscow : Faktorial, 1998, 288 p. (in Russian).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation of the Stress State of an Anisotropic Body of Revolution Under the Action of a Non-Axisymmetric Load;2022 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA);2022-11-09

2. Solution of the Nonaxisymmetric Elastostatic Problem for a Transversely Isotropic Body of Revolution;Herald of the Bauman Moscow State Technical University. Series Natural Sciences;2022-04

3. Comparison of contact problem exact solutions for transversely isotropic half-space;Вестник Донского государственного технического университета;2015-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3