Affiliation:
1. Институт солнечно-земной физики СО РАН
2. Institute of Solar Terrestrial Physics SB RAS
Abstract
Using data from ionosondes, located in East Asia, and total electron content maps, we have made a comparative analysis of ionospheric disturbances as-sociated with the intense geomagnetic storms of De-cember 14–16, 2006 and December 19–22, 2015. These storms had almost equal peak intensities (Dstmin=–162 and –155 nT), but different durations of the main phases (2.5 and 19 hr). At the beginning of both the storms, the region under study was located in the vicinity of the midnight meridian. Ionospheric re-sponses to magnetic storms differed in: i) an increase in the F2-layer critical frequency at subauroral latitudes, caused by an increase in auroral precipitation, during the initial phase of the former storm and the absence of this effect in the latter; (ii) a sharp drop in the critical frequency in the evening hours of the main phase of the latter storm, caused by a shift of the main ionospheric trough to lower latitudes, and the absence of this effect during the former storm; (iii) generation of a short-term positive disturbance observed at subauroral latitudes only in the early recovery phase of the former storm after the negative ionospheric disturbance. During both the storms at middle latitudes there were positive dis-turbances and wave-like fluctuations of the critical fre-quency which increased in the vicinity of the dawn me-ridian. The main causes of the differences between the ionospheric storms are shown to be the differences be-tween the initial conditions of the magnetosphere-ionosphere system and durations of the main phases of magnetic storms.
Publisher
Infra-M Academic Publishing House
Subject
Space and Planetary Science,Atmospheric Science,Geophysics
Reference59 articles.
1. Брюнелли Б.Е., Намгаладзе А.А. Физика ионосферы. М.: Наука, 1988. 528 с., Akasofu S.I. Energy coupling between the solar wind and the magnetosphere // Space Sci. Rev. 1981. V. 28. P. 121–190.
2. Дриацкий В.М. Природа аномального поглощения космического радиоизлучения в нижней ионосфере высоких широт. Л.: Гидрометеоиздат, 1974. 224 с., Bargatze L.F., Baker D.N., McPherron R.L., Hones E.V. Magnetospheric impulse response for many levels of geomagnetic activity. J. Geophys. Res. 1985, vol. 90, pp. 6387–6394. DOI: 10.1029/JA090iA07p06387.
3. Жеребцов Г.А., Пирог О.М., Разуваев О.И. Структура и динамика высокоширотной ионосферы // Исследования по геомагнетизму, аэрономии и физике Солнца. 1986. Вып. 76. С. 165–177., Baumjohann W., Kamide Y. Hemispherical Joule heating and the AE indices. J. Geophys. Res. 1984, vol. 89, pp. 383–388.
4. Романова Е.Б., Тащилин А.В. Моделирование структурных особенностей распределения концентрации электронов в плазмосфере // Солнечно-земная физика. 2013. Т. 22. С. 21–23., Borovsky J.E., Denton M.H. Solar wind turbulence and shear: A superposed-epoch analysis of corotating interaction regions at 1 AU. J. Geophys. Res. 2010, vol. 115, A10101. DOI: 10.1029/2009JA014966.
5. Тащилин А.В., Романова Е.Б. Моделирование свойств плазмосферы при спокойных и возмущенных условиях // Геомагнетизм и аэрономия. 2014. Т. 54, № 1. С. 13–22. DOI: 10.7868/S0016794014010167., Borries C., Mahrous A.M., Ellahouny N.M., Badeke R. Multiple ionospheric perturbations during the Saint Patrick’s Day storm 2015 in the European-African sector. J. Geophys. Res.: Space Phys. 2016, vol. 121, pp. 11333–11345. DOI: 10.1002/ 2016JA023178.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献