Geomagnetic data recovery approach based on the concept of digital twins

Author:

Vorobev Andrey1,Pilipenko Vyacheslav23

Affiliation:

1. Ufa State Aviation Technical University

2. Space Research Institute

3. Schmidt Institute of Physics of the Earth, RAS

Abstract

There is no ground-based magnetic station or observatory that guarantees the quality of information received and transmitted to it. Data gaps, outliers, and anomalies are a common problem affecting virtually any ground-based magnetometer network, creating additional obstacles to efficient processing and analysis of experimental data. It is possible to monitor the reliability and improve the quality of the hardware and soft- ware modules included in magnetic stations by develop- ing their virtual models or so-called digital twins. In this paper, using a network of high-latitude IMAGE magnetometers as an example, we consider one of the possible approaches to creating such models. It has been substantiated that the use of digital twins of magnetic stations can minimize a number of problems and limitations associated with the presence of emissions and missing values in time series of geomagnetic data, and also provides the possibility of retrospective forecasting of geomagnetic field parameters with a mean square error (MSE) in the auroral zone up to 11.5 nT. Integration of digital twins into the processes of collecting and registering geomagnetic data makes the automatic identification and replacement of missing and abnormal values possible, thus increasing, due to the redundancy effect, the fault tolerance of the magnetic station as a data source object. By the example of the digital twin of the station “Kilpisjärvi” (Finland), it is shown that the proposed approach implements recovery of 99.55 % of annual information, while 86.73 % with M not exceeding 12 nT.

Publisher

Infra-M Academic Publishing House

Reference30 articles.

1. Воробьев А.В., Воробьева Г.Р. Подход к оценке относительной информационной эффективности магнитных обсерваторий сети INTERMAGNET. Геомагнетизм и аэрономия. 2018а. Т. 58, № 5. С. 648–652. DOI: 10.1134/ S0016793218050158., Datcu M., Le Moigne J., Loekken S., Soille P., Xia G.-S. Special Issue on Big Data From Space. IEEE Transactions on Big Data, 2020, vol. 6, no. 3, pp. 427-429. DOI: 10.1109/TBDATA.2020.3015536.

2. Воробьев А.В., Воробьева Г.Р. Индуктивный метод восстановления временных рядов геомагнитных данных. Труды СПИИРАН. 2018б. № 2. C. 104–133. DOI: 10.15622/sp.57.5., Demyanov V.V., Savelyeva E.A. Geostatistics: theory and practice. Moscow, Nauka Pabl., 2010, 327 p. (In Russian).

3. Воробьев А.В., Воробьева Г.Р. Корреляционный анализ геомагнитных данных, синхронно регистрируемых магнитными обсерваториями INTERMAGNET. Геомагнетизм и аэрономия. 2018в. Т. 58, № 2. С. 187– 193. DOI: 10.7868/S0016794018020049., Engebretson M.J., Steinmetz E.S., Posch J.L., Pilipenko V.A., Moldwin M.B., Connors M.G. Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple‐instrument observations. J. Geophys. Res.: Space Phys. 2019, no. 124, pp. 7459–7476. DOI: 10.1029/2019JA026797.

4. Воробьев А.В., Пилипенко В.А., Еникеев Т.А., Воробьева Г.Р. Геоинформационная система для анализа динамики экстремальных геомагнитных возмущений по данным наблюдений наземных станций. Компьютерная оптика. 2020. Т. 44, № 5. С. 782–790. DOI: 10.18287/2412- 6179-CO-707., GOST 27.0022015. Reliability in technology. Terms and Definitions. Moscow.: Standartinform, 2016.23 p.

5. Гвишиани А.Д., Лукьянова Р.Ю. Исследование геомаг- нитного поля и проблемы точности бурения наклонно- направленных скважин в Арктическом регионе. Горный журнал. 2015. № 10. С. 94–99. DOI: 10.17580/gzh.2015.10.17., Grieves M.W. Digital Twin: Manufacturing Excellence through Virtual Factory Replication, Florida Institute of Technology Publ., 2014, 7 p.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3