Influence of relief on the atmospheric electric field

Author:

Denisenko Valery1

Affiliation:

1. Institute of Computational Modelling RAS SB

Abstract

Measurements of the fair-weather electric field in mountainous areas are affected by the terrain, and therefore need additional calibration to be included in the global field picture. To do this, it is proposed to solve the three-dimensional electric current continuity problem of the atmosphere in the region between the Earth's surface and the ionosphere. As an example, the neighborhood of Klyuchevskaya Sopka is considered. With an increase in the height of the plateaus, the fair-weather electric current density above them increases, and the electric field strength decreases. A one-dimensional model of atmosphere conductivity is not applicable for terrain with steep slopes. A comparison of the daily-seasonal diagrams constructed according to the data of the Carnegie Cruise VII and according to the Tomsk Observatory showed the similarity of variations of the fair-weather electric field strength in such different places on the Earth. The field over the sea is about half as small as over low-lying land at the same time.

Publisher

Infra-M Academic Publishing House

Reference15 articles.

1. Денисенко В.В., Помозов Е.В. Расчет глобальных электрических полей в земной атмосфере. Вычисл. технологии. 2010. Т. 15, № 5. С. 34-50., Adzhiev A.H., Boldyreff A.S., Dorina A.N., Kudrinskaya T.V., Kupovykh G.V., Novikova O.V., Panchishkina I.N., et al. Alpine atmospheric electricity monitoring and radon-222 measurement near Elbrus. Proc. 14th Int. Conf. Atm. Electricity. Rio-de-Janeiro, Brazil, 2011, pp. 112-115.

2. Денисенко В.В., Якубайлик О.Э. Учет рельефа при вычислении сопротивления глобального атмосферного проводника. Солнечно-земная физика. 2015. Т. 1, № 1. С. 104-108. DOI: 10.12737/6044., Akbashev R., Firstov P., Cherneva N. Recording of atmospheric electrical potential gradient in the central part of Kamchatka peninsula. Solar-Terrestrial Relations and Physics of Earthquake Precursors 2013. E3S Web of Conferences, 2013, vol. 62, 8620. DOI: 10.1051/e3sconf/20186202013.

3. Денисенко В.В., Райкрофт М.Дж., Харрисон Р.Дж. Математическая модель глобального ионосферного электрического поля, создаваемого грозами. Изв. РАН. Сер. физическая. 2023. Т. 87, № 1. С. 141-147. DOI: 10.31857/ S0367676522700260., Ampferer M., Denisenko V.V., Hausleitner W., Krauss S., Stangl G., Boudjada M.Y., Biernat H.K. Decrease of the electric field penetration into the ionosphere due to low conductivity at the near ground atmospheric layer. Ann. Geophys., 2010, vol. 28, no. 3, pp. 779-787. DOI: 10.5194/angeo-28-779-2010.

4. Мареев Е.А. Достижения и перспективы исследований глобальной электрической цепи. УФН. 2010. Т. 180. С. 527-534., Denisenko V.V., Pomozov E.V. Global electric fields in the Earth's atmosphere calculation. J. Comp. Tech. 2010, vol. 15, no. 5, pp. 34-50. (In Russian).

5. Михлин С.Г. Линейные уравнения в частных производных. М.: Высшая школа, 1977. 431 с., Denisenko V.V, Yakubailik O.E. The contribution of topography to the resistance of the global atmospheric conductor. Solar-Terr. Phys. 2015, vol. 1, no. 1, pp. 104-108. DOI: 10.12737/6044. (In Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3