Local diagnostics of aurora presence based on intelligent analysis of geomagnetic data

Author:

Vorobev Andrey12,Soloviev Anatoly34ORCID,Pilipenko Vyacheslav542ORCID,Vorobeva Gulnara16,Gainetdinova Aliya7,Lapin Aleksandr1,Belahovskiy Vladimir8,Roldugin Alexey9

Affiliation:

1. Ufa State Aviation Technical University

2. Geophysical Center RAS

3. Geophysical Center of RAS

4. Schmidt Institute of Physics of the Earth, RAS

5. Space Research Institute

6. Space Research Institute of RAS

7. Ufa University of Science and Technology

8. Polar Geophysical Institute

9. Polyarnyy geofizicheskiy institut

Abstract

Despite the existing variety of approaches to monitoring space weather and geophysical parameters in the auroral oval region, the issue of effective prediction and diagnostics of auroras as a special state of the upper ionosphere at high latitudes remains virtually unresolved. In this paper, we explore the possibility of local diagnostics of auroras through mining of geomagnetic data from ground-based sources. We assess the significance of indicative variables and their statistical relationship. So, for example, the application of Bayesian inference to the data from the Lovozero geophysical station for 2012–2020 has shown that the dependence of a posteriori probability of observing auroras in the optical range on the state of geomagnetic parameters is logarithmic, and the degree of its significance is inversely proportional to the discrepancy between empirical data and approximating function. The accuracy of the approach to diagnostics of aurora presence based on the random forest method is at least 86 % when using several local predictors and ~80 % when using several global geomagnetic activity indices characterizing the geomagnetic field disturbance in the auroral zone. In conclusion, we discuss promising ways to improve the quality metrics of diagnostic models and their scope.

Publisher

Infra-M Academic Publishing House

Subject

Space and Planetary Science,Atmospheric Science,Geophysics

Reference26 articles.

1. Baudot P., Tapia M., Bennequin D., Goaillard J.-M. Topological Information Data Analysis. Entropy. 2019, vol. 21, iss.9, p. 869. DOI: 10.3390/e21090869., Baudot P., Tapia M., Bennequin D., Goaillard J.-M. Topological Information Data Analysis. Entropy. 2019, vol. 21, iss.9, p. 869. DOI: 10.3390/e21090869.

2. Breedveld M.J. Predicting the Auroral Oval Boundaries by Means of Polar Operational Environmental Satellite Particle Precipitation Data. Master Thesis. Arctic University of Norway. June 2020., Breedveld M.J. Predicting the Auroral Oval Boundaries by Means of Polar Operational Environmental Satellite Particle Precipitation Data. Master Thesis. Arctic University of Norway. June 2020.

3. Gjerloev J.W. The SuperMAG data processing technique. J. Geophys. Res. 2012, vol. 117, iss. A9, p. A09213. DOI: 10.1029/2012JA017683., Gjerloev J.W. The SuperMAG data processing technique. J. Geophys. Res. 2012, vol. 117, iss. A9, p. A09213. DOI: 10.1029/2012JA017683.

4. Hand D.J., Till R.J. A simple generalization of the area under the ROC curve for multiple class classification problems. Machine Learning. 2001, vol. 45, рр. 171–186. DOI: 10.1023/A:1010920819831., Hand D.J., Till R.J. A simple generalization of the area under the ROC curve for multiple class classification problems. Machine Learning. 2001, vol. 45, rr. 171–186. DOI: 10.1023/A:1010920819831.

5. Jolliffe I.T. Principal Component Analysis. Ser.: Springer Series in Statistics, 2nd ed., Springer, NY, 2002, XXIX, 487 p., Jolliffe I.T. Principal Component Analysis. Ser.: Springer Series in Statistics, 2nd ed., Springer, NY, 2002, XXIX, 487 p.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3