Calculation of Acoustic Efficiency of Exhaust Silencers for Automotive Internal Combustion Engines

Author:

Tupov Vladimir1,Matasova O.1

Affiliation:

1. Bauman Moscow State Technical University

Abstract

Insertion losses as the main characteristic that mathematically describes the acoustic efficiency of a noise silencer has been considered. This characteristic shows the reduction of noise generated by its source, in particular by the internal combustion engine’s exhaust system, at the control point as a silencer use result. Has been presented a mathematical description of the insertion losses, and have been considered parameters necessary for calculating this characteristic. Has been demonstrated the analytical dependence of impedance for the sound emission by the exhaust system’s end hole from the coefficient of acoustic waves reflection by this hole. The performed analysis of the widely used formulas for calculating the coefficient of sound reflection by the end hole has showed their insufficient accuracy for project designs performing. Have been proposed calculation dependences providing high accuracy for calculations of the reflection coefficient modulus, and the attached length of the channel end hole without a flange in the entire range of the existence of plane waves in it. It has been shown that the end correction of this hole at ka = 0 is 0.6127, and not 0.6133, as it was mistakenly believed until now in world acoustics. Has been proposed a method for calculation the exhaust noise source internal impedance. This method more accurately, in comparison with the already known ones, describes the acoustic processes in the internal combustion engine’s exhaust manifold, thanks to increases the accuracy of calculation the silencer acoustic efficiency, that allows develop the silencer at the early stages of the design of an automotive internal combustion engine.

Publisher

Infra-M Academic Publishing House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3