Generation of infrasonic signals during earthquakes under Lake Hovsgool (Northern Mongolia) on December 5, 2014
Author:
Сорокин Александр1, Sorokin Aleksandr2, Ключевский Анатолий3, Klyuchevskii Anatoliy4, Демьянович Владимир3, Demyanovich Vladimir4
Affiliation:
1. Институт солнечно-земной физики СО РАН 2. Institute of Solar Terrestrial Physics SB RAS 3. Институт земной коры СО РАН 4. Institute of the Earth's Crust SB RAS
Abstract
The paper discusses the results of the detection of seismic and infrasonic waves generated by a major earthquake and its aftershock (the moment magnitude MW=4.9 and MW=4.2 respectively), which occurred in northern Mongolia under Lake Hovsgool on December 5, 2014. The joint analysis of waveforms of seismic and infrasonic oscillations has shown that the signal recorded by the infrasound station of the Geophysical Observatory of the Institute of Solar-Terrestrial Physics SB RAS (ISTP SB RAS) is formed from sources of three generation types: local, secondary, and epicentral. This analysis enables us to propose a hypothesis of generation of epicentral infrasonic signal by flexural waves in an elastic ice membrane on the surface of Lake Hovsgool, which appear during the passage of seismic wave packets. This hypothesis explains the similarity between seismic and epicentral infrasonic signals, negative initial phase of epicentral infrasonic waves, and detection of a weak signal after a small-magnitude aftershock.
Publisher
Infra-M Academic Publishing House
Subject
Space and Planetary Science,Atmospheric Science,Geophysics
Reference36 articles.
1. Аки К., Ричардс П. Количественная сейсмология. М.: Мир, 1983. Т. 1, 2. 880 с., Aki K., Richards P. Kolichestvennaya seismologiya [Quantitative Seismology]. Moscow, Mir Publ., 1983, vol. 1, 2, 880 p. (In Russian). 2. Альперович Л.С., Вугмейстер Б.О., Гохберг М.Б. и др. Об опыте моделирования магнитосферно-ионосферных эффектов при сейсмических явлениях // Доклады АН СССР. 1983. Т. 269, № 3. С. 573–578., Alperovich L.S., Vugmeister B.O., Gokhberg M.B., Drobzhev V.I., Erushchenkov A.I., Ivanov E.A., Kudryavtsev V.P., Kulichkov S.N., Krasnov V.M., Matveev A.K., Mordukhovich M.I., Nagorsky P.M., Ponomarev E.A., Pokhotelov O.A., Tarashchuk Yu.E., Troitskaya V.A., Fedorovich G.V. On experience in modeling magnetospheric-ionospheric effects at seismic events. Doklady AN SSSR [Doklady Earth Sciences]. 1983, vol. 269, no. 3, pp. 573–578. (In Russian). 3. Голицын Г.С., Кляцкин В.И. Колебания в атмосфере, вызываемые движениями земной поверхности // Изв. АН СССР. Физика атмосферы и океана. 1967. Т 3, № 10. С. 1044–1052., Arrowsmith S.J., Johnson J.B., Drob D.P., Hedlin M.A.H. The seismoacoustic wavefield: A new paradigm in studying geophysical phenomena. Rev. Geophys. 2010, vol. 48, RG4003. DOI: 10.1029/2010RG000335. 4. Добрынина А.А., Саньков В.А., Чечельницкий В.В. и др. Сейсмоакустические эффекты Хубсугульского землетрясения 5 декабря 2014 г. с Mw=4.9 // Доклады академии наук. 2017. Т. 477, № 6. С. 711–715., Benioff H., Gutenberg B. Observations with electromagnetic microbarographs. Nature. 1939, vol. 144, pp. 478. DOI: 10.1038/144478a0. 5. Ерущенков А.И., Пономарев Е.А., Сорокин А.Г. О микробаромах в Восточной Сибири // Иссл. по геомагнетизму, аэрономии и физике Солнца. 1979. Вып. 46. С. 113–120., Bolt B.A. Seismic airwaves from the Great 1946 Alaskan Earthquake. Nature. 1964, vol. 202, pp. 1095–1096. DOI: 10.1038/2021095a0.
|
|