Affiliation:
1. Anapa Zonal Experimental Station of Viticulture and Winemaking is a branch of the Federal State Budgetary Scientific Institution “North Caucasus Federal Scientific Center of Horticulture, Viticulture, Winemaking”
2. Anapskaya zonal'naya opytnaya stanciya vinogradarstva i vinodeliya – filial Severo-Kavkazskogo FANC
Abstract
The purpose of the study is to determine the necessary set of estimated signs of vineyards with terroir properties based on the generalization of literary sources and the setting up of field experience in the application of spectral indices from satellite images. The use of spectral data on the state of soils, plants and the environment makes it possible to evaluate the growth force of bushes and the yield of vineyards by difference normalized indices. Spectral analysis of vineyards using satellite images allows obtaining data on the vegetative and moisture variability of vine plantations with a frequency of 2-7 days. The correct interpretation of spectral satellite images is possible when they are verified by ground studies of soil indicators, vegetation of bushes by phenophases, agricultural work performed in the aisle, soil, air and leaf moisture. In the future, verification of satellite and ground-based data will reduce the number of route-field surveys and laboratory tests. To solve this problem, spectral data from the public satellite platforms Sentinel-2 and Landsat-8 must be calibrated using ground samples from sample plots of vineyard lands with terroir properties, which are defined as spectral patterns (samples) of vineyards. The presence of a relationship between soil moisture, leaf area and yield makes it possible, on the basis of the normalized NDVI vegetation index and NDMI soil moisture, to determine the micro-sites of vine plantations of different productivity and quality of grape harvest. Microzoning of the area according to such parameters as physical and chemical composition, soil moisture, morphometry, exposure and slope slopes makes it possible to identify viticultural areas with terroir properties. Identification of the boundaries and areas of vineyards with terroir properties using spectral raster satellite images with vectorization of difference soil layers in a geographic information system allows you to quickly assess viable lands, the productivity of various areas of vineyards and optimize agricultural work in accordance with a precision approach in viticulture.
Publisher
Infra-M Academic Publishing House
Subject
Energy Engineering and Power Technology,Fuel Technology
Reference19 articles.
1. О виноградарстве и виноделии в Российской Федерации: Федеральный закон от 27.12.2019 N 468-ФЗ (ред. от 02.07.2021) URL: http://publication.pravo.gov.ru/Document/View/0001201912280016 (дата обращения: 17.08.2022)., On viticulture and winemaking in the Russian Federation: Federal Law of December 27, 2019 N 468-FZ (as amended on July 2, 2021). [cited 2022, August 17]. Available from: http://publication.pravo.gov.ru/Document/View/0001201912280016.
2. Орлов В.А., Лукьянов А.А. Элементы цифровизации виноградных насаждений на основе геоинформационной системы // Плодоводство и виноградарство Юга России. 2022. № 73 (1) С. 14–27. doi: 10.30679/2219-5335-2022-1-73-14-27., Orlov VA, Luk'yanov AA. [Elements of digitalization of vine plantations based on a geographic information system]. Plodovodstvo i vinogradarstvo Yuga Rossii. 2022; 73 (1) 14-27 p. doi: 10.30679/2219-5335-2022-1-73-14-27.
3. Организация работы с данными наземных и дистанционных наблюдений для решения задач дистанционного мониторинга виноградников / Е.А. Рыбалко, Н.В. Баранова, Е.А. Лупян и др. // Современные проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13 (1). С. 79–92. doi: 10.21046/2070-7401-2016-13-1-79-92., Rybalko EA, Baranova NV, Lupyan EA. [Organization of work with data from ground and remote observations for solving problems of remote monitoring of vineyards]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2016; Vol.13 (1). 79-92 p. doi: 10.21046/2070-7401-2016-13-1-79-92.
4. A soil quality index using Vis-NIR and pXRF spectra of a soil profile / G. Gozukara, M. Acar, E. Ozlu, et al. // Catena. 2022 Vol. 211. 105954. URL: https://www.sciencedirect.com/science/article/abs/pii/S0341816221008122 (дата обращения: 01.07.2022). doi: 10.1016/j.catena.2021.105954., Gozukara G, Acar M, Ozlu E. A soil quality index using Vis-NIR and pXRF spectra of a soil profile. [Internet]. Catena. 2022; Vol.211. 105954 p. [cited 2022, July 1]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0341816221008122. doi: 10.1016/j.catena.2021.105954.
5. Soil classification of multihorizontal profiles using support vector machines and vis-NIR spectroscopy / S. Chen, W. Ma, D. Xu, et al. // Pedometrics: Wageningen 2017. P. 56. URL: https://hal.science/hal-01606621 (дата обращения: 10.07.2022)., Chen S, Ma W, Xu D. Soil classification of multihorizontal profiles using support vector machines and vis-NIR spectroscopy. [Internet]. Pedometrics: Wageningen 2017; 56 p. [cited 2022, July 10]. Available from: https://hal.science/hal-01606621.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献