Estimated influence of stratospheric activity on the ionosphere according to measurements with ISTP SB RAS tools

Author:

Tolstikov Maksim1,Ratovsky Konstantin2,Medvedeva Irina23,Khabituev Denis1

Affiliation:

1. Institute of Solar-Terrestrial Physics SB RAS

2. Institute of Solar Terrestrial Physics SB RAS

3. Obukhov Institute of Atmospheric Physics RAS

Abstract

We present the results of a comprehensive study of the manifestation of wave activity with periods of internal gravity waves (IGW) in various regions of the atmosphere: in the stratosphere, upper mesosphere, and in the F2-region of the ionosphere. The study is based on radiophysical and spectrometric measurements made with tools of the Institute of Solar-Terrestrial Physics (ISTP) SB RAS and the Era-Interim reanalysis data. The correlation coefficient with time shift between ionospheric and stratospheric activity for the annual interval varies in the range from 0.45 to 0.54, and for the 27-day interval it reaches the levels 0.4–0.8 in seventy percent of the cases. Thirty percent of correlation coefficients less than 0.4 can be explained by the influence of neutral wind, geomagnetic activity, and non-stratospheric IGW sources. Comparison between stratospheric activity and variations in characteristics of traveling ionospheric disturbances (TID) has shown that a ~15 day shift in stratospheric activity results in a fairly high correlation between stratospheric activity and disturbance of IGW characteristics (~0.6). The delay of about 15 days can be attributed to the delay in the temperature variations at heights of the lower thermosphere relative to the temperature variations at the altitude pressure level of 1 hPa. Comparative analysis of variations in mesospheric and ionospheric activity has revealed time intervals when their behavior is consistent.

Publisher

Infra-M Academic Publishing House

Subject

Space and Planetary Science,Atmospheric Science,Geophysics

Reference24 articles.

1. Bath M. Spectral Analysis in Geophysics. Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, 1974. 563 р., Bath M. Spectral Analysis in Geophysics. Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, 1974. 563 r.

2. Dell’Aquila A., Lucarini V., Ruti P.M., Calmanti S. Hayashi spectra of the northern hemisphere mid-latitude atmospheric variability in the NCEP-NCAR and ECMWF reanalyses. Climate Dynamics. 2005, vol. 25, no. 6, pp. 639–652., Dell’Aquila A., Lucarini V., Ruti P.M., Calmanti S. Hayashi spectra of the northern hemisphere mid-latitude atmospheric variability in the NCEP-NCAR and ECMWF reanalyses. Climate Dynamics. 2005, vol. 25, no. 6, pp. 639–652.

3. Erokhin N.S., Mikhailovskaya L.A., Shalimov S.L. Propagation of large scale internal gravitational waves to ionospheric heights through wind structures in the lower and medium atmosphere. Geophys. Res. 2007a, iss. 7, pp. 53–64. (In Russiain)., Erokhin N.S., Mikhailovskaya L.A., Shalimov S.L. Propagation of large scale internal gravitational waves to ionospheric heights through wind structures in the lower and medium atmosphere. Geophys. Res. 2007a, iss. 7, pp. 53–64. (In Russiain).

4. Erokhin N.S., Zolnikova N.N., Mikhailovskaya L.A. Peculiarities of interaction of internal gravitational waves with temperature-wind structures of the atmosphere during their propagation into the ionosphere. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2007b, vol. 2, pp. 84–89. (In Russian)., Erokhin N.S., Zolnikova N.N., Mikhailovskaya L.A. Peculiarities of interaction of internal gravitational waves with temperature-wind structures of the atmosphere during their propagation into the ionosphere. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2007b, vol. 2, pp. 84–89. (In Russian).

5. Goncharenko L., Zhang S.-R. Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude. Geophys. Res. Lett. 2008, vol. 35, L21103. DOI: 10.1029/ 2008GL035684., Goncharenko L., Zhang S.-R. Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude. Geophys. Res. Lett. 2008, vol. 35, L21103. DOI: 10.1029/ 2008GL035684.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3