Relation between the area of polar coronal holes and the solar wind speed at a minimum between solar cycles 22 and 23

Author:

Borisenko Aleksey1,Bogachev Sergey23ORCID

Affiliation:

1. Lebedev Physical Institute of the Russian Academy of Sciences

2. Space Research Institute of RAS

3. Samara National Research University

Abstract

We have used data from the space telescope SOHO/EIT and the spectrometer VEIS on the Wind spacecraft to compare the solar wind (SW) speed near Earth's orbit with changes in the area of polar coronal holes (CHs) on the Sun during the 1996 solar activity minimum. We have found that in March 1996 the SW speed correlated with the southern CH area by a factor of 0.64. In September and October 1996, a correlation was revealed between the SW speed and the area of the northern CH (the coefficients are 0.64 and 0.85 respectively). We believe that this confirms the assumption that the solar wind from polar CHs can penetrate into the ecliptic plane at solar minimum. The SW speed was 460–500 km/s, which is lower than that from equatorial CHs (600–700 km/s).

Publisher

Infra-M Academic Publishing House

Subject

Space and Planetary Science,Atmospheric Science,Geophysics

Reference23 articles.

1. Akhtemov Z.S., Tsap Y.T. On the Relationship between the Magnetic Field of a Low-Latitude Coronal Hole and Its Area. Astronomy Lett. 2021, vol. 47, no. 2, pp. 117–122. DOI: 10.1134/S1063773721010011., Akhtemov Z.S., Tsap Y.T. On the Relationship between the Magnetic Field of a Low-Latitude Coronal Hole and Its Area. Astronomy Lett. 2021, vol. 47, no. 2, pp. 117–122. DOI: 10.1134/S1063773721010011.

2. Baker K.B., Papagiannis M.D. Correlation of high latitude coronal holes with solar wind streams far above or below the ecliptic. Solar Phys. 1982, vol. 78, pp. 365–372. DOI: 10.1007/BF00151616., Baker K.B., Papagiannis M.D. Correlation of high latitude coronal holes with solar wind streams far above or below the ecliptic. Solar Phys. 1982, vol. 78, pp. 365–372. DOI: 10.1007/BF00151616.

3. Bogachev S.A., Reva A.A., Kirichenko A.S., Ulyanov A.S., Loboda I.P. Influence of Active Regions on Solar Wind Characteristics at the Cycle Maximum. Astronomy Lett. 2022, vol. 48, no. 7, pp. 406–415. DOI: 10.1134/S1063773722070039., Bogachev S.A., Reva A.A., Kirichenko A.S., Ulyanov A.S., Loboda I.P. Influence of Active Regions on Solar Wind Characteristics at the Cycle Maximum. Astronomy Lett. 2022, vol. 48, no. 7, pp. 406–415. DOI: 10.1134/S1063773722070039.

4. Borisenko A.V., Bogachev S.A. Influence of Polar Coronal Holes on Solar Wind Characteristics at the Activity Minimum between Solar Cycles 24 and 25. Astronomy Lett. 2020, vol. 46, no. 11, pp. 751–761. DOI: 10.1134/S1063773720110018., Borisenko A.V., Bogachev S.A. Influence of Polar Coronal Holes on Solar Wind Characteristics at the Activity Minimum between Solar Cycles 24 and 25. Astronomy Lett. 2020, vol. 46, no. 11, pp. 751–761. DOI: 10.1134/S1063773720110018.

5. Chashei I.V., Lebedeva T.O., Tyul’bashev S.A., Subaev I.A. Corotating and propagating disturbances in the solar wind based on monitoring of interplanetary scintillations at the LPA radio telescope of the Lebedev Physical Institute in 2017. Astronomy Rep. 2020, vol. 64, pp. 66–81. DOI: 10.1134/ S1063772920010084., Chashei I.V., Lebedeva T.O., Tyul’bashev S.A., Subaev I.A. Corotating and propagating disturbances in the solar wind based on monitoring of interplanetary scintillations at the LPA radio telescope of the Lebedev Physical Institute in 2017. Astronomy Rep. 2020, vol. 64, pp. 66–81. DOI: 10.1134/ S1063772920010084.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3