Technological Goal-Setting in The framework of the New Educational Area «Big Data» for the System of Professional Training of the Future Economist

Author:

Vlasov Dmitriy12

Affiliation:

1. Plekhanov Russian University of Economics

2. Financial University under the Government of the Russian Federation

Abstract

A weighty argument in favor of including the new educational area «Big Data» in the practice of professional training of the future economist is the competence in the field of building adequate predictive models, which is in demand in the modern labor market. Indeed, any leader is interested in improving the quality of the decisions made. This interest increases in conditions of sanctions pressure and post-pandemic restrictions, in difficult socio-economic conditions, when most of the resources are limited, the previously identified cause-and-effect relationships lose their relevance and the responsibility for decisions is significantly increased. Features of the implementation of the technological approach to disclosing the content of the new educational area «Big Data» in the system of professional training of the future economist is presented in this article as follows: firstly, in the form of a system of micro-goals at the basic level, and secondly, in the form of a system of micro-goals at an advanced level. Thus, within the framework of the technological goal-setting of the content of the new educational field, the principle of variability of the professional training of the future economist is implemented. Substantively presented in the article micro-goals cover various issues of using quantitative methods, mathematical and computational modeling. In addition, the formulations of micro-goals include requirements for the development of new tools that support big data analysis. Note that the implementation of technological goal-setting is necessary to strengthen the applied orientation of the training of a future economist, allows us to make a methodological emphasis on applied problems of socio-economic topics, the methods of solving which are in demand in future professional activities. The material of the article can be useful to teachers of the higher school of economics, as well as to anyone interested in modern methodological approaches to structuring educational content and achievements in the field of big data.

Publisher

Infra-M Academic Publishing House

Reference33 articles.

1. Бодряков В. Ю., Быков А. А. Методические подходы к обучению студентов направления "Прикладная математика и информатика" основам интеллектуальной обработки больших данных // Педагогическое образование в России. – 2016. – № 7. – С. 145-152., Bodryakov V. Yu., Bykov A. A. Metodicheskie podhody k obucheniyu studentov napravleniya "Prikladnaya matematika i informatika" osnovam intellektual'noy obrabotki bol'shih dannyh // Pedagogicheskoe obrazovanie v Rossii. – 2016. – № 7. – S. 145-152.

2. Бровка Н. В. Интеграция теории и практики обучения математике как средство повышения качества подготовки студентов – Минск: БГУ, 2009. – 243 с., Brovka N. V. Integraciya teorii i praktiki obucheniya matematike kak sredstvo povysheniya kachestva podgotovki studentov – Minsk: BGU, 2009. – 243 s.

3. Бровка Н. В. Об информатизации математической подготовки студентов на основе интеграции теории и практики // Математические методы в технике и технологиях – ММТТ. 2017. – Т. 11. – С. 64-70., Brovka N. V. Ob informatizacii matematicheskoy podgotovki studentov na osnove integracii teorii i praktiki // Matematicheskie metody v tehnike i tehnologiyah – MMTT. 2017. – T. 11. – S. 64-70.

4. Брызгалов А. А., Ярошенко Е. В. Применение методов Data Mining при проектировании и создании новой продукции и услуг // Открытое образование. – 2020. Т. 24. № 6. – С. 14-21., Bryzgalov A. A., Yaroshenko E. V. Primenenie metodov Data Mining pri proektirovanii i sozdanii novoy produkcii i uslug // Otkrytoe obrazovanie. – 2020. T. 24. № 6. – S. 14-21.

5. Власов Д. А. Особенности целеполагания при проектировании системы обучения прикладной математике // Философия образования. – 2008. – № 4 (25). – С. 278-283., Vlasov D. A. Osobennosti celepolaganiya pri proektirovanii sistemy obucheniya prikladnoy matematike // Filosofiya obrazovaniya. – 2008. – № 4 (25). – S. 278-283.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3