Turbulent parameters at different heights in the atmosphere. Shack–Hartmann wavefront sensor data

Author:

Shikhovtsev Artem1,Kiselev Aleksandr1,Kovadlo Pavel1,Kolobov Dmitriy1,Russkikh Ivan1,Tomin Vitaliy1

Affiliation:

1. Institute of Solar-Terrestrial Physics SB RAS

Abstract

The paper presents the results of studies of wavefront distortions at different heights in the atmosphere. We have used measurement wavefront data to determine optical turbulence parameters along the line of sight of the Large Solar Vacuum Telescope. Through cross-correlation analysis of differential motions of sunspots at spaced wavefront sensor subapertures, we determined turbulent parameters at different heights at the Large Solar Vacuum Telescope site. The differential motions of sunspots characterize the small-scale structure of turbulent phase distortions in the atmosphere. Synchronous temporal changes in the amplitude of these distortions at certain regions of the telescope aperture are conditioned by turbulent layers at different heights. We have estimated the contribution of optical turbulence to integral distortions at the telescope aperture for layers 0–0.6, 0.6–1.1, 1.1–1.7 km. The contribution of optical turbulence concentrated in a 1.7 km atmospheric layer to the wavefront distortions at the aperture telescope is shown to be ~43 %.

Publisher

Infra-M Academic Publishing House

Reference28 articles.

1. Больбасова Л.А., Лукин В.П. Исследование атмосферы для задач адаптивной оптики. Оптика атмосферы и океана. 2021. Т. 34, № 4. С. 254–271. DOI: 10.15372/AOO20210403., Arlt R., Vaquero J.M. Historical sunspot records. Living Rev. Solar Phys. 2020, vol. 17, iss. 1, article id. 1. DOI: 10.1007/s41116-020-0023-y.

2. Клейменов В.В., Возмищев И.Ю., Новикова Е.В. Ограничения применения лазерной опорной звезды в адаптивных оптико-электронных системах, обусловленные ее дрожанием в атмосфере. Оптический журнал. 2021. Т. 88, № 10. С. 26–32. DOI: 10.17586/2226-1494-2021-21-1-24-30., Banakh V.A., Smalikho I.N., Falits A.V. Estimation of the height of the turbulent mixing layer from data of Doppler lidar measurements using conical scanning by a probe beam. Atmospheric Measurement Techniques. 2021, vol. 14, iss. 2, pp. 1511–1524. DOI: 10.5194/amt-14-1511-2021.

3. Корнилов В., Ильясов С., Возякова О. и др. Измерения оптической турбулентности в свободной атмосфере над горой Майданак в 2005–2007 гг. Письма в астрономический журнал. 2009. Т. 35, № 8. С. 606–614., Bolbasova L.A., Lukin V.P. Atmospheric research for adaptive optics problem. Optika atmosfery i okeana. [Atmospheric and Oceanic Optics J.]. 2021, vol. 34, no. 4, pp. 254–271. DOI: 10.15372/AOO20210403. (In Russian).

4. Шиховцев А.Ю., Лукин В.П., Ковадло П.Г. Пути развития систем адаптивной оптики для солнечных телескопов наземного базирования. Оптика атмосферы и океана. 2021. Т. 34, № 05. С. 385–392. DOI: 10.15372/AOO20210512., Botygina N.N., Emaleev O.N., Konyaev P.A., Kopylov E.A., Lukin V.P. Development of components for adaptive optics systems for solar telescopes. Atmospheric and Oceanic Optics. 2018, vol. 31, pp. 216–223. DOI: 10.1134/S1024856018020057.

5. Arlt R., Vaquero J.M. Historical sunspot records. Living Rev. Solar Phys. 2020. Vol. 17, iss. 1, article id. 1. DOI: 10.1007/s41116-020-0023-y., Grigoryev V.M., Demidov M.L., Kolobov D.Yu., Pulyaev V.A., Skomorovsky V.I., Chuprakov S.A. AMOS team Project of the Large Solar Telescope with mirror 3 m in diameter. J. Solar-Terr. Phys. 2020, vol. 6, iss. 2, pp. 14–29. DOI: 10.12737/stp-62202002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3