Shape of spectrum of galactic cosmic ray intensity fluctuations

Author:

Starodubtsev Sergei1

Affiliation:

1. Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS

Abstract

The impact of solar wind plasma on fluxes of galactic cosmic rays (CR) penetrating from the outside into the heliosphere with energies above ~1 GeV leads to temporal variations in the CR intensity in a wide frequency range. Cosmic rays being charged particles, their modulation occurs mainly under impacts of the interplanetary magnetic field. It is well known that the observed spectrum of interplanetary magnetic field (IMF) fluctuations in a wide frequency range ν from ~10–7 to ~10 Hz has a pronounced falling character and consists of three sections: energy, inertial, and dissipative. Each of them is described by the power law PIMF(ν)~ν–α, while the IMF spectrum index α increases with increasing frequency. The IMF fluctuations in each of these sections are also characterized by properties that depend on their nature. Also known are established links between fluctuation spectra of the interplanetary magnetic field and galactic cosmic rays in the case of modulation of the latter by Alfvén or fast magnetosonic waves. The theory predicts that fluctuation spectra of cosmic rays should also be described by the power law PCR(ν)~ν–γ. However, the results of many years of SHICRA SB RAS research into the nature and properties of cosmic ray intensity fluctuations based on data from neutron monitors at stations with different geomagnetic cut-offs RC from 0.5 to 6.3 GV show that the observed spectrum of fluctuations in galactic cosmic ray intensity in the frequency range above 10–4 Hz becomes flat, i.e. it is similar to white noise. This fact needs to be realized and explained. This paper reports the results of research into the shape of the spectrum of galactic cosmic ray intensity fluctuations within a frequency range ν from ~10–6 to ~1 Hz and compares them with model calculations of white noise spectra, using measurement data from the neutron monitor of the Apatity station. A possible physical explanation has been given for the observed shape of the cosmic ray fluctuation spectrum on the basis of the known mechanisms of their modulation in the heliosphere.

Publisher

Infra-M Academic Publishing House

Reference17 articles.

1. Балабин Ю.В., Гвоздевский Б.Б., Германенко А.В. Большие и малые множественности на нейтронных мониторах: их различия. Изв. РАН. Сер. физ. 2015. Т. 79, № 5. С. 708–710. DOI: 10.7868/S0367676515050117., Balabin Yu.V., Gvozdevsky B.B., Vashenyuk E.V., DzhappuevD.D. EAS hadronic component as registered by a neutron monitor. Astrophys. Space Sci. Trans. 2011, vol. 7, pp. 507–510. DOI: 10.5194/astra-7-507-2011.

2. Бережко Е.Г., Стародубцев С.А. Природа динамики спектра флуктуаций космических лучей. Изв. АН СССР. Сер. физ. 1988. Т. 52. С. 2361–2363., Balabin, Y.V., Gvozdevsky B.B., Germanenko A.V. Large and small multiplicities at neutron monitors: How they differ. Bull. RAS: Phys. 2015, vol. 79, no.5, pp. 654–656. DOI: 10.3103/ S106287381505010X.

3. Дженкинс Г., Ваттс Д. Спектральный анализ и его приложения. М.: Мир, 1971. Вып. 1. 317 с., Berezhko E.G., Starodubtsev S.A. Nature of the dynamics of the cosmic-ray fluctuation spectrum. Izv. Akad. Nauk SSSR, Ser. Fiz. 1988, vol. 52, pp. 2361–2363. (In Russian).

4. Коваленко В.А. Солнечный ветер. М.: Наука, 1983. 273 с., Jenkins G.M., Watts D.G. Spectral analysis and its applications. San Francisco, Cambridge, London, Amsterdam, Holden-Day, 1968, 525 p.

5. Козлов В.И., Борисов Д.З., Туголуков Н.Н. Метод диагностики межпланетных возмущений по исследованию флуктуаций космических лучей и его реализация в системе автоматизации научных исследований на полярной геокосмофизической обсерватории Тикси. Изв. АН СССР. Сер. физ. 1984. Т. 48, № 10. С. 2228–2230., Kozlov V I., Borisov D.Z., Tugolukov N.N. Method for the diagnostics of interplanetary disturbances by the investigation of cosmic-ray fluctuations, and the implementation of this method in an automated scientific-research system at the Tiksi polar geocosmophysical observatory. Izv. Akad. Nauk SSSR, Ser. Fiz. 1984, vol. 48, pp. 2228–2230. (In Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3