Use of Mechanisms Marking Centers of Simplexes in Their 2-Dimensional Projections as Axonographs of Multidimensional Spaces

Author:

Abdurahmanov Sherzod1

Affiliation:

1. Namangan Institute of Civil Engineering

Abstract

A brief historical excursion into the graphics of geometry of multidimensional spaces at the paper beginning clarifies the problem – the necessary to reduce the number of geometric actions performed when depicting multidimensional objects. The problem solution is based on the properties of geometric figures called N- simplexes, whose number of vertices is equal to N + 1, where N expresses their dimensionality. The barycenter (centroid) of the N-simplex is located at the point that divides the straight-line segment connecting the centroid of the (N–1)-simplex contained in it with the opposite vertex by 1: N. This property is preserved in the parallel projection (axonometry) of the simplex on the drawing plane, that allows the solution of the problem of determining the centroid of the simplex in its axonometry to be assigned to a mechanism which is a special Assembly of pantographs (the author's invention) with similarity coefficients 1:1, 1:2, 1:3, 1:4,...1:N. Next, it is established, that the spatial location of a point in N-dimensional space coincides with the centroid of the simplex, whose vertices are located on the point’s N-fold (barycentric) coordinates. In axonometry, the ends of both first pantograph’s links and the ends of only long links of the remaining ones are inserted into points indicating the projections of its barycentric coordinates and the mechanism node, which serves as a determinator, graphically marks the axonometric location of the point defined by its coordinates along the axes х1, х2, х3 … хN.. The translational movement of the support rods independently of each other can approximate or remote the barycentric coordinates of a point relative to the origin of coordinates, thereby assigning the corresponding axonometric places to the simplex barycenter, which changes its shape in accordance with its points’ occupied places in the coordinate axes. This is an axonograph of N-dimensional space, controlled by a numerical program. The last position indicates the possibility for using the equations of multidimensional spaces’ geometric objects given in the corresponding literature for automatic drawing when compiling such programs.

Publisher

Infra-M Academic Publishing House

Reference38 articles.

1. Абдурахманов Ш. Прибор для определения центра тяжести n-мерного симплекса. Авторское свидетельство SU 1031794 // Бюллетень изобретений СССР – М., 1983. – № 28. – 4 с., Abdurakhmanov Sh. Pribor dlya opredeleniya tsentra tyajesti n-mernogo simpleksa. Avtorskoye svidetel’stvo SU 1031794. [Device for determining the center of gravity of an n-dimensional simplex. Author's certificate SU 1031794]. Byulleten izobreteniy SSSR [Bulletin of inventions of the USSR]. 1983, I. 28, 4 p. (in Russian)

2. Абдурахманов Ш. Способы аксонометрического изображения точек объектов многомерных пространств [Текст] / Ш. Абдурахманов // Научная жизнь – 2010, № 6. – С. 50 – 54., Abdurakhmanov Sh. Sposoby aksonometricheskogo izobrajeniya tochek ob’yektov mnogomernykh prostranstv [Methods of axonometric image of points of objects of multidimensional spaces]. “Nauchnaya zhizn’” [Scientific life]. 2010, I. 6, pp. 50–54. (in Russian)

3. Александров П.С. Барицентрические координаты. Симплексы [Текст] / П.С. Александров, В.А. Пасынков // Введение в теорию размерности. – М.: Наука, 1973. – С. 196 – 199, С. 201–211., Aleksandrov P.S., Pasynkov V.A. Baritsentricheskiye koordinaty. Simpleksy [Barycentric coordinates. Simplices]. Vvedenie v teoriyu razmernosti [Introduction to dimension theory]. Moscow, Nauka Publ., 1973, pp. 196 – 199, pp. 201 – 211. (in Russian)

4. Балк М.Б. Геометрические приложения понятия о центре тяжести [Текст] / М.Б. Балк. – М.: Физматгиз, 1959. – 230 с., Balk M.B. Geometricheskie prilojeniya ponyatiya o tsentre tyajesti [Geometric applications of the concept of the center of gravity]. Moscow, Fizmatgiz Publ., 1959. (in Russian)

5. Балк М.Б. Барицентрические координаты [Текст] М.Б. Балк, В.Г. Болтянский // Геометрия масс. – М.: Наука, 1987. – Гл. 4. – С. 76–128., Balk M.B., Boltyansky V.G. Baritsentricheskie koordinaty [Barycentrische coordinates]. Geometriya mass [Geometry of the masses]. Moscow, Nauka Publ., 1987, pp. 76 – 128. (in Russian)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3