Approximation of Physical Spline with Large Deflections

Author:

Korotkiy Viktor1,Vitovtov Igor'2

Affiliation:

1. South Ural State University

2. Chelyabinsk Institute of Railway Transport

Abstract

Physical spline is a resilient element whose cross-sectional dimensions are very small compared to its axis’s length and radius of curvature. Such a resilient element, passing through given points, acquires a "nature-like" form, having a minimum energy of internal stresses, and, as a consequence, a minimum of average curvature. For example, a flexible metal ruler, previously used to construct smooth curves passing through given coplanar points, can be considered as a physical spline. The theoretical search for the equation of physical spline’s axis is a complex mathematical problem with no elementary solution. However, the form of a physical spline passing through given points can be obtained experimentally without much difficulty. In this paper polynomial and parametric methods for approximation of experimentally produced physical spline with large deflections are considered. As known, in the case of small deflections it is possible to obtain a good approximation to a real elastic line by a set of cubic polynomials ("cubic spline"). But as deflections increase, the polynomial model begins to differ markedly from the experimental physical spline, that limits the application of polynomial approximation. High precision approximation of an elastic line with large deflections is achieved by using a parameterized description based on Ferguson or Bézier curves. At the same time, not only the basic points, but also the tangents to the elastic line of the real physical spline should be given as boundary conditions. In such a case it has been shown that standard cubic Bézier curves have a significant computational advantage over Ferguson ones. Examples for modelling of physical splines with free and clamped ends have been considered. For a free spline an error of parametric approximation is equal to 0.4 %. For a spline with clamped ends an error of less than 1.5 % has been obtained. The calculations have been performed with SMath Studio computer graphics system.

Publisher

Infra-M Academic Publishing House

Reference27 articles.

1. Волошинов Д.В. Алгоритмический комплекс для решения задач с квадриками с применением мнимых геометрических образов / Д.В. Волошинов // Геометрия и графика. – 2020. – Т. 8. – № 2. – С. 3-32. – DOI:10.12737/2308-4898-2020-3-32., Voloshinov D.V. Algoritmicheskiy kompleks dlya resheniya zadach s kvadrikami s primeneniem mnimyh geometricheskih obrazov / D.V. Voloshinov // Geometriya i grafika. – 2020. – T. 8. – № 2. – S. 3-32. – DOI:10.12737/2308-4898-2020-3-32.

2. Волошинов Д. В. Конструктивное геометрическое моделирование. Теория, практика, автоматизация: монография [Текст] / Д.В Волошинов. – Saarbrucken: Lambert Academic Publishing, 2010. – 355 с., Voloshinov D. V. Konstruktivnoe geometricheskoe modelirovanie. Teoriya, praktika, avtomatizaciya: monografiya [Tekst] / D.V Voloshinov. – Saarbrucken: Lambert Academic Publishing, 2010. – 355 s.

3. Волошинов Д.В. Конструктивное геометрическое моделирование как перспектива преподавания графических дисциплин [Текст] / Д.В. Волошинов, К.Н. Соломонов // Геометрия и графика. – 2013. – Т. 1. – № 2. – С. 10-13. – DOI:10.12737/778., Voloshinov D.V. Konstruktivnoe geometricheskoe modelirovanie kak perspektiva prepodavaniya graficheskih disciplin [Tekst] / D.V. Voloshinov, K.N. Solomonov // Geometriya i grafika. – 2013. – T. 1. – № 2. – S. 10-13. – DOI:10.12737/778.

4. Голованов Н.Н. Геометрическое моделирование / Н.Н. Голованов. – М.: Изд-во физико-математической литературы, 2012. – 472 с., Golovanov N.N. Geometricheskoe modelirovanie / N.N. Golovanov. – M.: Izd-vo fiziko-matematicheskoy literatury, 2012. – 472 s.

5. Завьялов Ю.С. Сплайны в инженерной геометрии / Ю.С. Завьялов, В.А. Леус, В.А. Скороспелов. – М.: Машиностроение, 1985. – 224 с., Zav'yalov Yu.S. Splayny v inzhenernoy geometrii / Yu.S. Zav'yalov, V.A. Leus, V.A. Skorospelov. – M.: Mashinostroenie, 1985. – 224 s.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3