Affiliation:
1. South Ural State University
2. Chelyabinsk Institute of Railway Transport
Abstract
Physical spline is a resilient element whose cross-sectional dimensions are very small compared to its axis’s length and radius of curvature. Such a resilient element, passing through given points, acquires a "nature-like" form, having a minimum energy of internal stresses, and, as a consequence, a minimum of average curvature. For example, a flexible metal ruler, previously used to construct smooth curves passing through given coplanar points, can be considered as a physical spline. The theoretical search for the equation of physical spline’s axis is a complex mathematical problem with no elementary solution. However, the form of a physical spline passing through given points can be obtained experimentally without much difficulty. In this paper polynomial and parametric methods for approximation of experimentally produced physical spline with large deflections are considered. As known, in the case of small deflections it is possible to obtain a good approximation to a real elastic line by a set of cubic polynomials ("cubic spline"). But as deflections increase, the polynomial model begins to differ markedly from the experimental physical spline, that limits the application of polynomial approximation. High precision approximation of an elastic line with large deflections is achieved by using a parameterized description based on Ferguson or Bézier curves. At the same time, not only the basic points, but also the tangents to the elastic line of the real physical spline should be given as boundary conditions. In such a case it has been shown that standard cubic Bézier curves have a significant computational advantage over Ferguson ones. Examples for modelling of physical splines with free and clamped ends have been considered. For a free spline an error of parametric approximation is equal to 0.4 %. For a spline with clamped ends an error of less than 1.5 % has been obtained. The calculations have been performed with SMath Studio computer graphics system.
Publisher
Infra-M Academic Publishing House
Reference27 articles.
1. Волошинов Д.В. Алгоритмический комплекс для решения задач с квадриками с применением мнимых геометрических образов / Д.В. Волошинов // Геометрия и графика. – 2020. – Т. 8. – № 2. – С. 3-32. – DOI:10.12737/2308-4898-2020-3-32., Voloshinov D.V. Algoritmicheskiy kompleks dlya resheniya zadach s kvadrikami s primeneniem mnimyh geometricheskih obrazov / D.V. Voloshinov // Geometriya i grafika. – 2020. – T. 8. – № 2. – S. 3-32. – DOI:10.12737/2308-4898-2020-3-32.
2. Волошинов Д. В. Конструктивное геометрическое моделирование. Теория, практика, автоматизация: монография [Текст] / Д.В Волошинов. – Saarbrucken: Lambert Academic Publishing, 2010. – 355 с., Voloshinov D. V. Konstruktivnoe geometricheskoe modelirovanie. Teoriya, praktika, avtomatizaciya: monografiya [Tekst] / D.V Voloshinov. – Saarbrucken: Lambert Academic Publishing, 2010. – 355 s.
3. Волошинов Д.В. Конструктивное геометрическое моделирование как перспектива преподавания графических дисциплин [Текст] / Д.В. Волошинов, К.Н. Соломонов // Геометрия и графика. – 2013. – Т. 1. – № 2. – С. 10-13. – DOI:10.12737/778., Voloshinov D.V. Konstruktivnoe geometricheskoe modelirovanie kak perspektiva prepodavaniya graficheskih disciplin [Tekst] / D.V. Voloshinov, K.N. Solomonov // Geometriya i grafika. – 2013. – T. 1. – № 2. – S. 10-13. – DOI:10.12737/778.
4. Голованов Н.Н. Геометрическое моделирование / Н.Н. Голованов. – М.: Изд-во физико-математической литературы, 2012. – 472 с., Golovanov N.N. Geometricheskoe modelirovanie / N.N. Golovanov. – M.: Izd-vo fiziko-matematicheskoy literatury, 2012. – 472 s.
5. Завьялов Ю.С. Сплайны в инженерной геометрии / Ю.С. Завьялов, В.А. Леус, В.А. Скороспелов. – М.: Машиностроение, 1985. – 224 с., Zav'yalov Yu.S. Splayny v inzhenernoy geometrii / Yu.S. Zav'yalov, V.A. Leus, V.A. Skorospelov. – M.: Mashinostroenie, 1985. – 224 s.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献