Geometric Modeling of Stress Visualization Tools Based on the Functional-Voxel Method

Author:

Pushkarev S.1,Plaksin A.2,Sycheva A.2,Harlanova P.2

Affiliation:

1. FSBEI HE MSTU "Stankin"

2. IPU RAS (laboratory No. 18)

Abstract

One of the approaches to the construction of graphic images of the stress state for the force vector applied to a point is considered in this work. Has been proposed a geometric model for a continuous medium, formed by a bunch of projection planes for each point of the examined object’s space. This permits to obtain a model for a volume vector in the form of a distributed decomposition into stress components at each point specified by a bunch of projection planes. The building a model for a volume vector, defined as a set of specified laws of direction and length, in the context of modeling stress from an applied force vector to a selected point, is based on strength of materials’ classical laws for calculation the stress state values at an inclined section. Such approach allows use a voxel graphic structure for computer representation of the simulated stress, rather than a finite element mesh. In such a case, there is no obtained result’s error dependence on the spatial position of the mesh nodal points, which is often a problem in FEM calculations. The resulting functional-voxel computer model of the volume stress vector is a structural unit for modeling the distributed load on areas of complex configuration. In this case, the elementary summation of such vectors allows any uneven distribution of the load relative to each point on the specified area. The considered approach works well with geometric models initially represented analytically in the form of a function space (for example, models obtained by the R-functional modelling – RFM-method), and reduced to functional-voxel computer models. A method for deformation modeling based on obtained stresses by means of local transformations of the function space, describing the investigated geometric object, is demonstrated.

Publisher

Infra-M Academic Publishing House

Reference41 articles.

1. Бондарев А.Е. Анализ развития концепций и методов визуального представления данных в научных исследованиях задач вычислительной физики [Текст] / А.Е. Бондарев, В.М. Чечеткин, В.А. Галактионов // Журнал вычислительной математики и математической физики. – 2011. – Т. 51. – № 4. – С. 669–683., Bondarev A.E., Chechetkin V.M., Galaktionov V.A. Analiz razvitiya koncepcij i metodov vizual'nogo predstavleniya dannyh v nauchnyh issledovaniyah zadach vychislitel'noj fiziki [Analysis of the development of concepts and methods of visual presentation of data in scientific research of problems of computational physics]. Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki [Journal of Computational Mathematics and Mathematical Physics]. 2011, V. 51, I. 4, pp. 669–683. (in Russian)

2. Булычев Р.Н. Описание процесса деформирования листового материала с использованием параметрического твердотельного моделирования [Текст] / Т.В. Аюшеев // Геометрия и графика. – 2018. – Т. 6. – №. 1. ¬– С. 48–56. – DOI: 10.12737/article_5ad09a84cbd105.88047545., Bulychev R.N., Ayusheev T.V. Opisanie processa deformirovaniya listovogo materiala s ispol'zovaniem parametricheskogo tverdotel'nogo modelirovaniya [Description of the deformation process of sheet material using parametric solid modeling]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 1, pp. 48–56. DOI: 10.12737/article_5ad09a84cbd105.88047545. (in Russian)

3. Бурков П.В. Трехмерное напряженно-деформированное состояние трубы с ручейковым износом при сложном нагружении [Текст] / С.П. Буркова // Международный научно-исследовательский журнал. – 2015. – № 4-1 (35). – С. 46–49., Burkov P.V., Burkova S.P. Trekhmernoe napryazhenno-deformirovannoe sostoyanie truby s ruchejkovym iznosom pri slozhnom nagruzhenii [Three-dimensional stress-strain state of a pipe with rivulet wear under complex loading]. Mezhdunarodnyj nauchno-issledovatel'skij zhurnal [International scientific research journal]. 2015, I. 4-1 (35), pp. 46–49. (in Russian)

4. Гордон И.И. Аналитическая геометрия том I и II (рецензия) [Текст] / И.И. Гордон, Д.А. Делоне, Д.А. Райков // Успехи математической науки. – 1950. – Т. 5. – № 6. – С. 180–186., Gordon I.I., Delone D.A., Raikov D.A. Analiticheskaya geometriya tom I II (recenziya) [Analytical geometry volumes I and II (review)]. Uspekhi matematicheskoj nauki [Advances in Mathematical Science]. 1950, V. 5, I. 6, pp. 180–186. (in Russian)

5. Дмитриев С.В. Решение упругой задачи методом конечных элементов. Визуализация тензора напряжений. [Текст] / С.В. Дмитриев // ГИАБ. – 2017. – № 7 – С. 222–227., Dmitriev S.V. Reshenie uprugoj zadachi metodom konechnyh elementov. Vizualizaciya tenzora napryazhenij [Solving an elastic problem by the finite element method. Visualization of the stress tensor]. GIAB [MIAB]. 2017, I. 7, pp. 222–227. (in Russian)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Building Space Model Method Based on Big Data Map Visual Design;Computational Intelligence and Neuroscience;2022-05-11

2. Point Tools of Geometric Modeling, Invariant Relating to Parallel Projection;Geometry & Graphics;2022-04-14

3. Functional-voxel Modeling of the Toolpath when Milling a Pocket Area;Proceedings of the 32nd International Conference on Computer Graphics and Vision;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3