GEOMETRIC MODEL OF GROUP PURSUIT OF A SINGLE TARGET BY THE CHASE METHOD

Author:

Dubanov Aleksandr1

Affiliation:

1. Banzarov Buryat State University

Abstract

The article describes the model of group pursuit of a single target by the chase method. All objects participating in the pursuit model move with a constant modulo speed. One of the participants in the process moves along a certain trajectory and releases objects at specified intervals, the task of which is to achieve the goal by the chase method. All objects have restrictions on the curvature of the motion path. A single target, in turn, is tasked with achieving the target that releases objects using the parallel approach method. For each pursuing object, a detection area is formed in the form of two beams. The object's velocity vector is directed along the bisector of the angle formed by such rays. If the target enters the detection area, then the object starts pursuit and the velocity vector is directed to the target. If the target leaves the detection area, then the object makes a uniform and rectilinear movement. The task is to implement a dynamic model of multiple group pursuit, where each object has its own tasks, implemented by the chase method. As an example, where the model developed in the article could be in demand, the following example can be given. Consider the movement of a low-maneuverable object that is overtaking a faster target. As a means of protection, instead of releasing passive heat traps, it is proposed to drop a variety of autonomously controlled weapons. An analysis of existing studies has shown that such means of protecting aircraft do not exist. The results of the research can be in demand in the design of unmanned aerial vehicles with elements of autonomous control and artificial intelligence.

Publisher

Infra-M Academic Publishing House

Subject

General Medicine

Reference25 articles.

1. Абрамянц Т.Г. Уклонение групповой цели в трехмерном пространстве [Текст] / Т.Г. Абрамянц, Е.П. Маслов, В.П. Яхно // Автоматика и телемеханика. – 2008. – № 5. – С. 3–14., Abramyanc T.G. Uklonenie gruppovoy celi v trehmernom prostranstve [Tekst] / T.G. Abramyanc, E.P. Maslov, V.P. Yahno // Avtomatika i telemehanika. – 2008. – № 5. – S. 3–14.

2. Айзекс Р. Дифференциальные игры [Текст] / Р. Айзекс. – М.: Мир, 1967. – 480 с., Ayzeks R. Differencial'nye igry [Tekst] / R. Ayzeks. – M.: Mir, 1967. – 480 s.

3. Банников А.C. Некоторые нестационарные задачи группового преследования [Текст] / А.C. Банников // Известия Института математики и информатики УдГУ. – 2013. – Вып. 1 (41). – C. 3–46., Bannikov A.C. Nekotorye nestacionarnye zadachi gruppovogo presledovaniya [Tekst] / A.C. Bannikov // Izvestiya Instituta matematiki i informatiki UdGU. – 2013. – Vyp. 1 (41). – C. 3–46.

4. Богданов А.В. Методы самонаведения истребителей и ракет класса «воздух-воздух» на групповую воздушную цель: моногр. [Текст]/ А.В. Богданов, А.А. Филонов, А.А. Ковалев [и др.] под ред. Кучина А.А. – Красноярск: Изд-во Сибирского федер. ун-та. – 2014. – 168 с., Bogdanov A.V. Metody samonavedeniya istrebiteley i raket klassa «vozduh-vozduh» na gruppovuyu vozdushnuyu cel': monogr. [Tekst]/ A.V. Bogdanov, A.A. Filonov, A.A. Kovalev [i dr.] pod red. Kuchina A.A. – Krasnoyarsk: Izd-vo Sibirskogo feder. un-ta. – 2014. – 168 s.

5. Видео, результаты моделирования задачи преследования. URL: https://www.youtube.com/watch?v=t9cxOgk6bdk (дата обращения: 12.02.2022)., Video, rezul'taty modelirovaniya zadachi presledovaniya. URL: https://www.youtube.com/watch?v=t9cxOgk6bdk (data obrascheniya: 12.02.2022).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3