Effect of copper nanoclusters on the tribological properties of steel-steel friction pair in alcohol aqueous solutions

Author:

Burlakova Victoria Eduardovna1,Kosogova Yulia Pavlovna2,Drogan Ekaterina Gennadyevna1

Affiliation:

1. Don State Technical University, Rostov-on-Don, Russian Federation

2. Rostov State University of Economics, Volgodonsk branch, Volgodonsk, Russian Federation

Abstract

The purpose of this study is to investigate the influence of the alcohol atomicity on the self-organizing control capability in order to achieve the wearlessness effect in the friction pair of steel-steel. The copper-containing lubricant compositions are prepared in the electrolysis of the aqueous solutions of polyatomic alcohols with a copper anode in the ultrasonic field (complex processing). The laboratory testing of the tribological behavior of the lubricating compositions is carried out on four-ball machine using balls of SH-15 steel according to GOST 9490-75. Tribological properties of steel-steel friction pair are studied on the front friction machine AE-5. The copper particle size is defined by the sedimentation analysis method using the disk centrifuge of CPS Disc Centrifuge Model DC 24000 brand in the aqueous solutions of polyatomic alcohols. The topographic studies of the nanocluster metal structures are performed with the scanning probe microscope (SPM) Solver P 47 H in the semi-contact mode of the atomic force microscopy (AFM). The topographic investigations of a servovit film are conducted with the use of the scanning atomic force and power microscope of Compact AFM PHYWE . It is shown that the time increment of the integrated processing of a water-alcohol mixture leads to the strengthening of the antiwear properties of lubricant compositions. Increasing alcohol atomicity facilitates the implementation of the selective transfer, thus reducing wear and the transition time in the wearlessness mode. The resulting molecular ligand copper clusters with an average size of 25 nm are characterized by high uniformity. Thus, the friction track represents rather ironed surface with low roughness.

Publisher

FSFEI HE Don State Technical University

Reference16 articles.

1. Garkunov, D. N., Babel, V. G. Vliyanie metalloplakiruyushchikh prisadok na tribotekhnicheskie kharakteristiki plastichnoy smazki «Buksol». [Effect of metal plaque additives on tribological characteristics of “Buksol” lubricant.] Friction & Lubrication in Machines and Mechanisms, 2006, no. 7, pp. 20–25 (in Russian).

2. Luty, M., et al. Metodologiya sozdaniya smazochnykh materialov s nanomodifikatorami. [Methods of creating lubricating materials with nanomodifiers.] Friction and Wear, 2002, vol. 23, no. 4, pp. 411–423 (in Russian).

3. Kuzharov, A. S., et al. Triboelectrochemistry of the “warless” effect. Mechanism of the forming of the protective layers on steel surface in the process of self- organization in tribosystem “copper – glycerin – steel”. Friction and Wear, 1998, vol. 19, no. 6, pp. 768–778.

4. Kuzharov, А. А. Tribotekhnicheskie svoystva nanometrichnykh klasterov medi : dis. … kand. tekhn. nauk. [Tribological properties of copper nanoclusters: Cand.Sci. (Eng.) diss.] Rostov-on-Don, 2004, 136 p. (in Russian).

5. Padgurskas, J., et al. Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribologu International, 2013, vol. 60, no. 4, pp. 224–232.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tribological effect of the combined use of micro- and nano- scale additives in the textile machinery lubricants;PROCEEDINGS OF THE II INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS, SYSTEMS AND TECHNOLOGIES: (CAMSTech-II 2021);2022

2. Effect of organic acid concentration in lubricant on tribological characteristics of friction couple;Vestnik of Don State Technical University;2019-04-01

3. The Synthesis and Study of Metal Powder Stabilizer Properties in Lubrication Compositions;Engineering Technologies and Systems;2019-03-29

4. Effect of the Composition of the Lubricating Medium on the Structure of Surface Layers Formed by the Friction of a Servovite Film;Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques;2019-03

5. Nanotribology of Aqueous Solutions of Monobasic Carboxylic Acids in a Copper Alloy‒Steel Tribological Assembly;Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques;2018-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3