Spatial and temporal variations of K Ca II line profile shapes in different structures of the solar chromosphere. I. Features of individual profiles

Author:

Турова Ирина1,Turova Irina2,Григорьева София1,Grigoryeva Sofiya2,Ожогина Ольга1,Ozhogina Olga2

Affiliation:

1. Институт солнечно-земной физики СО РАН

2. Institute of Solar Terrestrial Physics SB RAS

Abstract

We have studied Ca II K line profiles, using two time series of spectrograms taken in two regions near the solar disk center. In each of the regions, the spectrograph slit cut out several areas of the quiet region and a plage. For the selected chromospheric structures, we have derived K line profiles and have defined a number of parameters that characterize the spatial and temporal variations of the profiles. The analysis of profile shapes in different structures belonging to the same moment of time has shown that there are structures whose profiles differ only slightly from each other in the photosphere, but differ dramatically in the chromosphere. The structures begin to differ from the level of formation of K1 and continue to differ further in the chromosphere. There are, however, structures which begin to differ at the level of the photosphere and continue to differ in the chromosphere. The difference between profile shapes in different structures is likely to be associated both with different thermodynamic conditions and with different magnetic field topology at a given point at a given time. We have examined temporal variations of the K Ca II line profiles in structural chromospheric elements, which are caused by the process of K2v-grains. In most of the studied areas of the chromospheric structures, the brightening of the K2v peak develops according to the “common” scenario: at the time of maximum bright-ness, the line shifts toward the red side. There are, however, cases when the brightening of the K2v peak occurs with a shift of the line to the violet side or with no shift at all. We have constructed scatter plots for some pairs of profile parameters related to intensities at characteristic points of the profile and their shifts. A correlation has been found between intensities in the center and wings of the K line. The correlation between shifts of the K2v and K2r peaks is very weak or completely absent.

Publisher

Infra-M Academic Publishing House

Subject

Space and Planetary Science,Atmospheric Science,Geophysics

Reference28 articles.

1. Bappu M.K.V., Sivaraman K.R. K emission-line widths and the solar chromosphere // Solar Phys. 1971. V. 17. P. 316–330., Bappu M.K.V., Sivaraman K.R. K emission-line widths and the solar chromosphere // Solar Phys. 1971. V. 17. P. 316–330.

2. Beck C., Schmidt W., Rezaei R., Rammacher W. The signature of chromospheric heating in Ca II H spectra // Astron. Astrophys. 2008. V. 479. P. 213–227. DOI: 10.1051/0004-6361:20078410., Beck C., Schmidt W., Rezaei R., Rammacher W. The signature of chromospheric heating in Ca II H spectra // Astron. Astrophys. 2008. V. 479. P. 213–227. DOI: 10.1051/0004-6361:20078410.

3. Beck C., Khomenko E., Rezaei R., Collados M. The energy of waves in the photosphere and lower chromosphere I. Velocity statistics // Astron. Astrophys. 2009. V. 507. P. 453–467. DOI: 10.1051/0004-6361/200911851., Beck C., Khomenko E., Rezaei R., Collados M. The energy of waves in the photosphere and lower chromosphere I. Velocity statistics // Astron. Astrophys. 2009. V. 507. P. 453–467. DOI: 10.1051/0004-6361/200911851.

4. Bjørgen J.P., Sukhorukov A.V., Leenaarts J., et al. Three-dimensional modeling of the Ca II H&K lines in the solar atmosphere // ArXiv:1712.01045v1 [astro-ph.SR]. 2017., Bjørgen J.P., Sukhorukov A.V., Leenaarts J., et al. Three-dimensional modeling of the Ca II H&K lines in the solar atmosphere // ArXiv:1712.01045v1 [astro-ph.SR]. 2017.

5. Carlsson M., Stein R.F. Formation of solar calcium H and K bright grains // Astrophys. J. 1997. V. 481. P. 500–514., Carlsson M., Stein R.F. Formation of solar calcium H and K bright grains // Astrophys. J. 1997. V. 481. P. 500–514.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3