Algorithm for constructing a polynomial solution of a program control problem for a dynamic system in partial derivatives

Author:

Zubova Svetlana1

Affiliation:

1. Voronezh State University of Forestry and Technologies named after G.F. Morozov

Abstract

The completely controlled dynamic system in partial derivatives is considered. The problem of constructing state and control functions in an analytical form is solved. The basic method is the cascade decomposition method, which is algorithmically implemented in three stages: forward cascade decomposition, central stage and reverse. The method is based on the properties of the matrix coefficient at the derivative of the control function. Decomposition means a p-step transition from the original system to a reduced system that is quite similar in form to the original one, but with respect to functions from subspaces. The given conditions are reduced in the process of decomposition. When passing to the p-th step system, additional conditions appear on the partial derivatives of the components of the state function. The number of extra conditions at each point is equal to the number of decomposition steps. The matrix coefficient at the derivative of the control function of the reduced system of the last step is surjective. It is this property that determines the presence of the property of complete controllability of the system under consideration. The first stage of decomposition - the stage of the direct move ends with the detection of the number of decomposition steps and the identification of the property of complete controllability. The task of the central stage of decomposition is to construct the state function of the reduced system of the last step in an analytical form. The state function of the reduced system is the basis function that determines the form of the state function of the original system. Necessary and sufficient conditions for the existence of a basis function in polynomial form are established. The minimum degree of the polynomial is also set, which is determined by the number of decomposition steps. Formulas for constructing vector functions - coefficients of the basis function polynomial are given. Formulas for constructing the control function of the reduced system are given in polynomial form. During the last stage of decomposition, the state function of the original system is successively restored in polynomial form. This polynomial function satisfies the given conditions at the start and end points. The final stage is the construction of the control function of the original system in polynomial form as well. While the last stage of decomposition the state function of the original system is successively restored in polynomial form. This polynomial function satisfies the given conditions at the start and end points. The final stage is the construction of the control function of the original system also in polynomial form. A step-by-step algorithm for solving the program control problem for a dynamic system in partial derivatives has been developed. Formulas for constructing state and control functions in polynomial form are given. An example of a three-dimensional dynamical partial differential system with a surjective matrix coefficient in the first-step splitting system is given. The implementation of the proposed algorithm is demonstrated. The state and control functions are constructed in the form of a polynomial of minimum degree.

Publisher

Infra-M Academic Publishing House

Subject

General Medicine

Reference32 articles.

1. Джохадзе, О.М. Смешанная задача с нелинейным граничным условием для полулинейного уравнения колебания струны / О.М. Джохадзе // Дифференциальные уравнения. – 2022. – Т. 58, № 5. – С. 591-606., Dzhohadze, O.M. Smeshannaya zadacha s nelineynym granichnym usloviem dlya polulineynogo uravneniya kolebaniya struny / O.M. Dzhohadze // Differencial'nye uravneniya. – 2022. – T. 58, № 5. – S. 591-606.

2. Назаров, С.А. Волны Релея для эллиптических систем в областях с периодическими границами / С.А. Назаров // Дифференциальные уравнения. – 2022. – Т. 58, № 5. – С. 638-655., Nazarov, S.A. Volny Releya dlya ellipticheskih sistem v oblastyah s periodicheskimi granicami / S.A. Nazarov // Differencial'nye uravneniya. – 2022. – T. 58, № 5. – S. 638-655.

3. Зайцева, Н.В. Классические решения гиперболических дифференциально-разностных уравнений в полупространстве / Н.В. Зайцева // Дифференциальные уравнения. – 2022. – Т. 58, № 5. – С. 628-637., Zayceva, N.V. Klassicheskie resheniya giperbolicheskih differencial'no-raznostnyh uravneniy v poluprostranstve / N.V. Zayceva // Differencial'nye uravneniya. – 2022. – T. 58, № 5. – S. 628-637.

4. Алексеева, Л.А. Обобщенные решения стационарных краевых задач для биволновых уравнений / Л.А. Алексеева // Дифференциальные уравнения. – 2022. – Т. 58, № 4. – С. 477-488., Alekseeva, L.A. Obobschennye resheniya stacionarnyh kraevyh zadach dlya bivolnovyh uravneniy / L.A. Alekseeva // Differencial'nye uravneniya. – 2022. – T. 58, № 4. – S. 477-488.

5. Коненков, А.Н. Асимптотика фундаментальных решений параболических уравнений с одной пространственной переменной / А.Н. Коненков // Дифференциальные уравнения. – 2022. – Т. 58, № 4. – С. 489-497., Konenkov, A.N. Asimptotika fundamental'nyh resheniy parabolicheskih uravneniy s odnoy prostranstvennoy peremennoy / A.N. Konenkov // Differencial'nye uravneniya. – 2022. – T. 58, № 4. – S. 489-497.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3