Modeling the behavior of mobile robots using genetic algorithms

Author:

Zarevich Anton1,Makarenko F.1,Yagodkin A.1,Zolnikov Konstantin2

Affiliation:

1. Voronezh State University of Forestry and Technologies named after G.F. Morozov

2. AO "Nauchno-issledovatel'skiy institut elektronnoy tehniki"

Abstract

The article is devoted to the analysis of the behavior of a mobile robot using finite state machine algorithms in order to find a way to the goal and avoid obstacles. After justifying the use of such methods, the analysis of a standard deterministic finite automaton is done. Further, the theory of Markov processes is applied to this algorithm, as a result of which the state machine becomes part of the hidden Markov model. This allows you to apply probabilistic methods to modeling the behavior of the robot. This probabilistic behavior is most promising in complex environments with unpredictable obstacle configurations. To compare the efficiency of deterministic and probabilistic finite state machine, we applied a genetic algorithm. In the numerical experiment that we conducted in the Scilab software, we considered two main types of environments in which a mobile robot can move - an office-type environment and a polygonal-type environment. For each type of environment, we alternately applied each of the indicated behavior algorithms. For the genetic algorithm, we used one hundred individuals who were trained over 1000 generations to find the most optimal path in the specified environments. As a result, it was found that the deterministic finite state machine algorithm is the most promising for movement in an office-type environment, and the probabilistic finite state machine algorithm gives the best result in a complex polygonal environment.

Publisher

Infra-M Academic Publishing House

Subject

General Medicine

Reference22 articles.

1. Robots that can adapt like animals / A. Cully, J. Clune, D. Tarapore, J.B. Mouret // Nature. – 2015. - V. 521 (7553). - Pp. 503–507. - DOI: 10.1038/nature14422., Robots that can adapt like animals / A. Cully, J. Clune, D. Tarapore, J.B. Mouret // Nature. – 2015. - V. 521 (7553). - Pp. 503–507. - DOI: 10.1038/nature14422.

2. Юдинцев, Б.С. Синтез нейросетевой системы планирования траекторий для группы мобильных роботов / Б.С. Юдинцев // Системы управления, связи и безопасности. – 2019. - № 4. – С. 163-186. – DOI: 10.24411/2410-9916-2019-10406., Yudincev, B.S. Sintez neyrosetevoy sistemy planirovaniya traektoriy dlya gruppy mobil'nyh robotov / B.S. Yudincev // Sistemy upravleniya, svyazi i bezopasnosti. – 2019. - № 4. – S. 163-186. – DOI: 10.24411/2410-9916-2019-10406.

3. Path Planning for Mobile Robot Navigation in Unknown Indoor Environments Using Hybrid PSOFS Algorithm / M.N.A. Wahab, C.M. Lee, M.F. Akbar, F.H. Hassan // IEEE Access. - 2020. - Vol. 8. - Pp. 161805-161815. - DOI: 10.1109/ACCESS.2020.3021605., Path Planning for Mobile Robot Navigation in Unknown Indoor Environments Using Hybrid PSOFS Algorithm / M.N.A. Wahab, C.M. Lee, M.F. Akbar, F.H. Hassan // IEEE Access. - 2020. - Vol. 8. - Pp. 161805-161815. - DOI: 10.1109/ACCESS.2020.3021605.

4. Arkin, R. Behavior-Based Robotics / R. Arkin. – MIT Press. Cambridge, 1998. – 491 p. - DOI:10.5860/choice.36-5109., Arkin, R. Behavior-Based Robotics / R. Arkin. – MIT Press. Cambridge, 1998. – 491 p. - DOI:10.5860/choice.36-5109.

5. Даринцев, О.В. Синтез гибридных интеллектуальных алгоритмов планирования траектории / О.В. Даринцев, А.Б. Мигранов // Фундаментальные исследования. – 2015. – № 12-4. – С. 676-681, Darincev, O.V. Sintez gibridnyh intellektual'nyh algoritmov planirovaniya traektorii / O.V. Darincev, A.B. Migranov // Fundamental'nye issledovaniya. – 2015. – № 12-4. – S. 676-681

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3