Analysis and modeling of online service user behavior trajectories using the RETENTIONEERING platform

Author:

Shipilova Elena1,Nekrylov Egor1,Kurchenkova Tat'yana1

Affiliation:

1. Voronezh State University

Abstract

The active development and widespread distribution of online stores and sales sites sets the task for marketers and IT specialists to analyze the results of sites and customer behavior to maximize store profits and predict the development of online sales. The article provides an analysis of the purchasing activity of Internet users of various categories in various periods, the postulates of online trading are formulated. To comprehensively analyze the impact of a variety of factors, predict the demand for goods, form additional recommendations and special support for purchases, the authors offer an integrated approach based on taking into account traditional components, and using the latest tools and software products for analyzing the behavior of online buyers. As a system of analysis, the Retentioneering platform is considered as the most representative and meets the modern requirements for business intelligence systems. The use of platform tools simplifies the processing and analysis of event flows, user behavior trajectories, user classification, allows you to create logical connections and functions for machine learning when predicting a user's category and behavior, as well as the likelihood of a target event - making a purchase based on previously collected data on user behavior. Based on a set of statistics on the behavior of online store buyers, the article discusses such tools for analyzing the Retentioneering platform as an interactive graph of visualization of the behavior trajectory, the matrix of steps and transitions, conversion funnels, clustering the behavior of vectoring user trajectories. Clustering methods use multivariate space convolution algorithms. The UMAP and t-SNE algorithms are considered as dimensionality reduction methods. The main stages and formulas of implementation of convolution algorithms are given, their advantages and disadvantages are considered. These algorithms simplify the process of finding global minima, and improve the quality of rendering. The described algorithms and methods allow you to analyze the behavior of visitors to the online store, combine users into clusters with a similar behavior strategy according to various target features, identify the most pressing problems and bottlenecks of the network platform.

Publisher

Infra-M Academic Publishing House

Subject

General Medicine

Reference31 articles.

1. Digital 2021: главная статистика по России и всему миру. – URL: https://spark.ru/user/115680/blog/74085/digital2021-glavnaya-statistika-po-rossii-i-vsemu-miru/ (дата обращения: 07.10.2022)., Digital 2021: glavnaya statistika po Rossii i vsemu miru. – URL: https://spark.ru/user/115680/blog/74085/digital2021-glavnaya-statistika-po-rossii-i-vsemu-miru/ (data obrascheniya: 07.10.2022).

2. Прохорова, М.В. Организация работы интернет-магазина / М.В. Прохорова, А.Л. Коданина. – М. : Дашков и К, 2020. – 332 с., Prohorova, M.V. Organizaciya raboty internet-magazina / M.V. Prohorova, A.L. Kodanina. – M. : Dashkov i K, 2020. – 332 s.

3. Gull, M. Customer behavior analysis towards online shopping using data mining / M. Gull, A. Pervaiz // 2018 5th International Multi-Topic ICT Conference (IMTIC). – 2018. – Pp. 1-5. – DOI: 10.1109/IMTIC.2018.8467262., Gull, M. Customer behavior analysis towards online shopping using data mining / M. Gull, A. Pervaiz // 2018 5th International Multi-Topic ICT Conference (IMTIC). – 2018. – Pp. 1-5. – DOI: 10.1109/IMTIC.2018.8467262.

4. Mediascope представила данные об аудитории интернета в России. – URL: https://mediascope.net/news/1209287/ (дата обращения: 07.10.2022)., Mediascope predstavila dannye ob auditorii interneta v Rossii. – URL: https://mediascope.net/news/1209287/ (data obrascheniya: 07.10.2022).

5. Цифровые услуги в России. – URL: https://www.statista.com/study/67443/digital-services-in-russia/ (дата обращения: 07.10.2022)., Cifrovye uslugi v Rossii. – URL: https://www.statista.com/study/67443/digital-services-in-russia/ (data obrascheniya: 07.10.2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3