Analysis of the Bremsstrahlung Photons Flux and the Neutrons Beams during the Operation of the Medical Electron Accelerator

Author:

Лыкова Е.1,Lykova E.2,Желтоножская М.11,Zheltonozhskaya M.22,Смирнов Ф.3,Smirnov F.4,Руднев П.5,Rudnev P.6,Черняев А.1,Chernyaev A.2,Чешигин И.7,Cheshigin I.8,Яценко В.3,Yatsenko V.4

Affiliation:

1. Московский государственный университет имени М.В. Ломоносова

2. M.V. Lomonosov Moscow State University

3. Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России

4. A.I. Burnasyan Federal Medical Biophysical Center of FMBA

5. ООО «Центр АЦП»

6. LLC "Center ATSP"

7. Национальный Исследовательский Центр «Курчатовский институт»

8. National Research Center «Kurchatov Institute»,

Abstract

Purpose: To estimate the contribution of the secondary neutron flux to the total radiation flux during the operation of Trilogy linear medical accelerator and Varian’s Clinac 2100 accelerator for assessment of impact on the health of patients and medical personnel. High-energy linear accelerators operating at energies higher than 8 MeV generate neutron fluxes when interacting with accelerator elements and with structural materials of the room for treating patients. Neutrons can form at the accelerator head (target, collimators, smoothing filter, etc.), the procedure room, and directly in the patient’s body. Because of the high radiobiological hazard of neutron radiation, its contribution to the total beam flux, even at a level of few percent, substantially increases the dose received by the patient. Material and methods: Secondary neutron fluxes were investigated during the process of the linear medical accelerators Trilogy and Clinac 2100 of Varian operation by the photoactivation method using (γ, n) and (n, γ) reactions on the detection target of natural 181Ta. In addition, measurements of neutron spectra were carried out directly in the room during the operation of a medical accelerator using a spectrometer-dosimeter SDMF-1608. Results: It was determined that the neutron flux on the tantalum target is 16 % of the gamma-ray flux on the same target when the accelerator is operated with a 18 MeV bremsstrahlung energy and 5 % when the accelerator is operated with a 20 MeV excluding thermal neutrons. Conclusion: Finally, it may be noted that, taking into account the coefficient of relative biological efficiency (RBE) of neutron radiation for neutrons with energies of 0.1–200 keV equal to 10 compared with the RBE coefficient for gamma quanta (equal to 1), even preliminary analysis demonstrates significant underestimation of the contribution of neutrons dose to the total dose received by the patient in radiation therapy using bremsstrahlung of 18 and 20 MeV.

Publisher

Infra-M Academic Publishing House

Subject

Nuclear Energy and Engineering

Reference25 articles.

1. Carrillo HR, Almaraz BH, Dávila VM, Hernández AO. Neutron spectrum and doses in a 18 MV Linac. J Radioanal Nucl Chem. 2010;283:261-5., Carrillo HR, Almaraz BH, Dávila VM, Hernández AO. Neutron spectrum and doses in a 18 MV Linac. J Radioanal Nucl Chem. 2010;283:261-5.

2. Zanini A, Durisi E, Fasolo F, Ongaro C, Visca L, Nastasi U, et al. Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems. Phys Med Biol. 2004;49:571-82., Zanini A, Durisi E, Fasolo F, Ongaro C, Visca L, Nastasi U, et al. Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems. Phys Med Biol. 2004;49:571-82.

3. Pena J, Franco L, Gómez F, Iglesias A, Pardo J, Pombar M. Monte Carlo study of Siemens PRIMUS photoneutron production. Phys Med Biol. 2005;50:5921-33., Pena J, Franco L, Gómez F, Iglesias A, Pardo J, Pombar M. Monte Carlo study of Siemens PRIMUS photoneutron production. Phys Med Biol. 2005;50:5921-33.

4. Seltzer SM. An assessment of the role of charged seconderies from nonelastic nuclear interaction by therapy proton beam in water. National Institute of Standards and Tehnology Technical Reports No. NISTIR 5221, 1993., Seltzer SM. An assessment of the role of charged seconderies from nonelastic nuclear interaction by therapy proton beam in water. National Institute of Standards and Tehnology Technical Reports No. NISTIR 5221, 1993.

5. Schimmerling W, Rapkin M, Wong M, Howard J. The propagation of relativistic heavy ions in multielement beam lines. Med Phys. 1986;13:217-23., Schimmerling W, Rapkin M, Wong M, Howard J. The propagation of relativistic heavy ions in multielement beam lines. Med Phys. 1986;13:217-23.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State-of-the-Art Nuclear Physics Research in Medicine;Physics of Particles and Nuclei Letters;2023-08

2. Radiation Technologies in Medicine: The Role of Secondary Particles in Forming Doses;Bulletin of the Russian Academy of Sciences: Physics;2020-11

3. The Dose from Secondary Neutrons during the Operation of Modern Medical Accelerators;Moscow University Physics Bulletin;2019-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3