Manifestation of solar wind corotating interaction regions in GCR intensity variations

Author:

Krainev Mikhail12,Kalinin Mikhail3,Bazilevskaya Galina3,Svirzhevskaya Albina3,Svirzhevsky Nikolay3,Luo Xi2,Aslam O.P.M.2,Shen F.4,Ngobeni M.D.56,Potgieter M.S.27

Affiliation:

1. Lebedev Physical Institute, RAS

2. Shandong Institute of Advanced Technology

3. P.N. Lebedev Physical Institute of RAS

4. National Space Science Center

5. North-West University, Centre for Space Research

6. School of Physical and Chemical Sciences, North-West University

7. nstitute for Experimental and Applied Physics, Christian Albrechts University

Abstract

The regions of interaction between solar wind streams of different speed, known as corotating interaction regions, form an almost constantly existing structure of the inner heliosphere. Using observational data on the main characteristics of the heliosphere, important for GCR modulation, and the results of 3D MHD modeling of corotating interaction regions, and Monte Carlo simulation of recurrent GCR variations, we analyze the importance of the corotating interaction regions for longitude-averaged characteristics of the heliosphere and GCR propagation, and possible ways for simulating long-term GCR intensity variations with respect to the corotating interaction regions.

Publisher

Infra-M Academic Publishing House

Subject

General Medicine

Reference49 articles.

1. Калинин М.С., Крайнев М.Б. Двумерное транспортное уравнение для галактических космических лучей как следствие редукции трехмерного уравнения. Геомагнетизм и аэрономия. 2014. Т. 54, № 4. С. 463–469. DOI: 10.7868/ S0016794014040051., Adriani O., Barbarino G.C., Bazilevskaya G.A., Bellotti R., Boezio M., Bogomolov E.A., et al. Time dependence of the proton flux measured by PAMELA during the 2006 July – 2009 December solar minimum. Astrophys. J. 2013, vol. 765:91, no. 2. DOI: 10.1088/0004-637X/765/2/91.

2. Крайнев М.Б. Проявления в гелиосфере и в интенсивности ГКЛ двух ветвей солнечной активности. Солнечно-земная физика. 2019. Т. 5, № 4. С. 12–25. DOI: 10.12737/ szf-54201902., Aslam O.P.M., Bisschoff D., Potgieter M.S., Boezio M., Munini R. Modeling of heliospheric modulation of cosmic-ray positrons in a very quiet heliosphere. Astrophys. J. 2019, vol. 8736: 70, no. 1. DOI: 10.3847/1538-4357/ab05e6.

3. Крайнев М.Б., Базилевская Г.А., Боркут И.К. и др. О связи долготного распределения гелиосферных характеристик и интенсивности ГКЛ в 2007–2008 и 2014–2015 гг. Ядерная физика и инжиниринг. 2017. Т. 8, № 4. С. 373–379. DOI: 10.1134/S2079562917040157., Belcher J.W., Davis L. Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 1971, vol. 76, iss. 16, p. 3534. DOI: 10.1029/JA076i016p03534.

4. Крымский Г.Ф. Диффузионный механизм суточных вариаций космических лучей. Геомагнетизм и аэрономия. 1964. Т. 4. С. 977., Burlaga L.F., Ness N.F., Wang J.-M., Sheeley N.R. Heliospheric magnetic field strength and polarity from 1 to 81 AU during the ascending phase of solar cycle 23. J. Geophys. Res. 2002, vol. 107, no. A11, p. 1410. DOI: 10.1029/2001JA009217.

5. Свиржевский Н.С., Базилевская Г.А., Калинин М.С. и др. Моделирование интенсивности галактических космических лучей с учетом пространственной и временной зависимости спектра флуктуаций гелиосферного магнитного поля. Известия РАН. Сер. физ. 2015. Т. 79, № 5. С. 663–666. DOI: 10.7868/S0367676515050415., Gosling J.T., Pizzo V. Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 1999, vol. 89, pp. 21–52. DOI: 10.1023/A:100 5291711900.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3