Solving eigenvalues problems for Helmholtz equation by point-source method

Author:

Shcherbakova Elena E.1

Affiliation:

1. Don State Technical University

Abstract

A method of problem solution of the eigenvalues and eigenfunctions for the Helmholtz equation in the domains with arbitrary configuration is worked out. In developing the approach of the numerical solution of problems, the point-source method (PSM) is used. The proposed method is based on the analysis of the condition number of the PSM system or error of the problem numerical solution. The concept of “eigenvalues criterion” is introduced. The research result is a developed effective method - an algorithm for solving problems of eigenvalues and eigenfunctions for the Helmholtz equation. It is shown that at the approach of the Helmholtz parameter to the problem eigenvalue, the condition number of the PSM system and the error of the numerical solution rise sharply. Therefore, the dependence of the condition number of the PSM system or the error of the problem numerical solution can be calculated from the Helmholtz parameter. Then, according to the position of the maximum of the obtained dependences, the eigenvalues of the Helmholtz equation in a given domain are found. It allows searching the eigenvalues. After finding the eigenvalues, it is possible to proceed to the determination of the eigenfunctions. At that, if the eigenvalue appears degenerate, that is some eigenfunctions correspond to it, then it is possible to find all the eigenfunctions taking into account the symmetry of the solution domain. The two-dimensional and three-dimensional test problems are solved. Upon the results obtained, the conclusion about the efficiency of the proposed method is made.

Publisher

FSFEI HE Don State Technical University

Reference21 articles.

1. Fairweather, G., Karageorghis, A. The method of fundamental solutions for elliptic boundary value problems. Ad. Vol. Comput. Math., 1998, vol. 9, pp. 69–95.

2. Alves, C.J.S., Chen, C.S. A new method of fundamental solutions applied to nonhomogeneous elliptic problems. Advances in Computational Mathematics, 2005, vol. 23, pp. 125–142.

3. Knyazev S.Y. Ustoychivost' i skhodimost' metoda tochechnykh istochnikov polya pri chislennom reshenii kraevykh zadach dlya uravneniya Laplasa. [Stability and Convergence of Point-Source Field Method at Numerical Solution to Boundary Value Problems for Laplace Equation]. Russian Electromechanics, 2010, no. 1, pp. 3–12 (in Russian).

4. Knyazev, S.Y., Shcherbakova, E.E., Yengibaryan, A.A. Chislennoe reshenie kraevykh zadach dlya uravneniya Puassona metodom tochechnykh istochnikov polya. [Numerical solution of the boundary problems with Poisson equation by point-source method.] Vestnik of DSTU, 2014. Vol. 14. No. 2(77). pp. 15–20 (in Russian).

5. Knyazev S.Y., Shcherbakova E.E. Reshenie trekhmernykh kraevykh zadach dlya uravneniy Laplasa s pomoshch'yu metoda diskretnykh istochnikov polya. [The Decision of the Three-Dimensional Boundary Value Problems for the Laplace Equation Using the Method of Discrete Sources of the Field.] Russian Electromechanics, 2015, no. 5, pp. 25–30 (in Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3