Variability of ionospheric ionization over Eurasia according to data from a high-latitude ionosonde chain during extreme magnetic storms in 2015

Author:

Chernigovskaya Marina1,Setov Artem1,Ratovsky Konstantin1,Kalishin Alexey2ORCID,Stepanov Aleksandr3

Affiliation:

1. Institute of Solar Terrestrial Physics SB RAS

2. Arctic and Antarctic Research Institute

3. Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS

Abstract

. We have examined longitudinal-temporal variations in ionospheric parameters over Eurasia by analyzing data from a chain of high-latitude ionosondes along a latitude circle ~70° N (geomagnetic latitudes 58°<Glat<65°) in the longitudinal sector 26–171° E during severe magnetic storms of solar cycle 24 in March and June 2015. To analyze the response of ionospheric ionization to geomagnetic disturbances, we have used ionosonde data on hourly average critical frequency foF2 of the ionospheric F2 layer. Strong differences were observed between common peculiarities of temporal variations in foF2 for the analyzed periods of magnetic storms, which are likely associated with the characteristic features of the seasonal and diurnal variations in the background high-latitude ionosphere of the given geographic region. During the main and early recovery phases of magnetic storms there were periods of blackouts of ionosonde radio signals. Differences in the character of the ionospheric response to geomagnetic disturbances have been noted. This is probably due to seasonal features of the probability of occurrence of the ionospheric storm positive or negative phase in different seasons of the year. The trends of increasing ionospheric ionization over the vast region of Eastern, Western Siberia and Europe after the end of the extreme magnetic storm in March 2015, according to measurements from the chain of high-latitude ionosondes, may be associated with the formation of an area of increased [O]/[N₂] ratio over this territory. Such an increase in ionospheric ionization exceeding the background level of foF2 values can be considered as a clear manifestation of the after-effect of magnetic storms.

Publisher

Infra-M Academic Publishing House

Reference51 articles.

1. Алпатов В.В., Беляев А.Н., Куницын В.Е. Методы томографии в исследованиях и мониторинге верхней атмосферы и ионосферы. Мир измерений. 2013, № 2. C. 31–37., Alpatov V.V., Belyaev A.N., Kunitsyn V.E. Tomography methods in research and monitoring of the upper atmosphere and ionosphere. Mir izmerenii [Measurements World]. 2013, no. 2, pp. 31–37. (In Russian).

2. Андреева Е.С., Падохин А.М., Назаренко М.О., Туманова Ю.С., Калашникова С.А. Томографические методы исследования атмосферы и околоземного космического пространства: Современное состояние и перспективы развития. Труды XXVII Всероссийской открытой научной конференции «Распространение радиоволн». Калининград. 2021. C. 86–98., Afraimovich E.L., Perevalova N.P. GPS-monitoring verkhnei atmosfery Zemli [GPS Monitoring of the Earth’s Upper Atmosphere]. Irkutsk, 2006, pp. 90–94. (In Russian).

3. Афраймович Э.Л., Перевалова Н.П. GPS-мониторинг верхней атмосферы Земли. Иркутск: ГУ НЦ ВСНЦ СО РАМН. 2006. С. 90–94., Afraimovich E.L., Astafyeva E.I., Demyanov V.V., Edemskiy I.K., Gavrilyuk N.S., Ishin A.B., et al. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J. Space Weather and Space Climate. 2013, vol. 3, no. A27. DOI: 10.1051/swsc/2013049.

4. Выставной В.М., Макарова Л.Н., Широчков А.В., Егорова Л.В. Исследования высокоширотной ионосферы методом вертикального зондирования с использованием современного цифрового ионозонда CADI. Гелиогеофизи-ческие исследования. 2013. Вып. 4. С. 1–10., Andreeva E.S., Padokhin A.M., Nazarenko M.O., Tumanova Yu.S., Kalashnikova S.A. Tomographic methods for studying the atmosphere and near-Earth space: Current status and development prospects. Trudy XXVII Vserossiiskoi otkrytoi nauchnoi konferentsii “Rasprostranenie radiovoln” [Proc. XXVII National Open Scientific Conference “Radio Wave Propagation”]. Kaliningrad, 2021, pp. 86–98. (In Russian).

5. Деминов М.Г. Ионосфера Земли: закономерности и механизмы. В сб.: Электромагнитные и плазменные процессы от недр Солнца до недр Земли. Юбилейный сборник ИЗМИРАН-75. Москва, 2015. С. 295–346., Buonsanto M.J. Ionospheric storms — a review. Space Sci. Rev. 1999, vol. 88, pp. 563–601.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3