Diamagnetic structures as a basis of quasi-stationary slow solar wind

Author:

Еселевич Виктор1,Eselevich Viktor2

Affiliation:

1. Институт солнечно-земной физики СО РАН

2. Institute of Solar Terrestrial Physics SB RAS

Abstract

The results presented in this review reflect the fundamentals of the modern understanding of the nature of the structure of the slow solar wind (SW) along the entire length from the Sun to the Earth's orbit. It is known that the source of the slow quasi-stationary SW on the Sun is the belt and the chains of coronal streamers The streamer belt encircles the entire Sun as a wave-like surface (skirt), representing a sequence of pairs of rays with increased brightness (plasma density) or two lines of rays located close to each other. Neutral line of the radial component of the solar global magnetic field goes along the belt between the rays of each of these pairs. The streamer belt extends in the heliosphere is as the heliospheric plasma sheet (HPS). Detailed analysis of data from Wind and IMP-8 satellites showed that HPS sections on the Earth orbit are registered as a sequence of diamagnetic tubes with high density plasma and low interplanetary magnetic field. They represent an extension of rays with increased brightness of the streamer belt near the Sun. Their angular size remains the same over the entire way from the Sun to the Earth's orbit. Each HPS diamagnetic tube has a fine internal structure on several scales, or fractality. In other words, diamagnetic tube is a set of nested diamagnetic tubes, whose angular size can vary by almost two orders of magnitude. These sequences of diamagnetic tubes that form the base of slow SW on the Earth's orbit has a more general name — diamagnetic structures (DS). In the final part of this article, a comparative analysis of several events was made, based on the results of this review. He made it possible to find out the morphology and nature of the origin of the new term “diamagnetic plasmoids” SW (local amplifications of plasma density), which appeared in several articles published during 2012–2018. The analysis carried out at the end of this article, for the first time, showed that the diamagnetic plasmoids SW are the small-scale component of the fractal diamagnetic structures of the slow SW, considered in this review.

Publisher

Infra-M Academic Publishing House

Subject

Space and Planetary Science,Atmospheric Science,Geophysics

Reference28 articles.

1. Borrini G., Wilcox J.M., Gosling J.T., Feldman W.C. Wilcox J.M. Solar wind helium and hydrogen structure near the heliospheric current sheet; a signal of coronal streamer at 1 AU. J. Geophys. Res. 1981, vol. 86, pp. 4565., Borrini G., Wilcox J.M., Gosling J.T., Feldman W.C. Wilcox J.M. Solar wind helium and hydrogen structure near the heliospheric current sheet; a signal of coronal streamer at 1 AU. J. Geophys. Res. 1981, vol. 86, pp. 4565.

2. Eselevich V.G., Fainshtein V.G. The heliospheric current sheet (HCS) and high-speed solar wind: interaction effects. Planetary Space Sci. 1991, vol. 39, pp. 737–744., Eselevich V.G., Fainshtein V.G. The heliospheric current sheet (HCS) and high-speed solar wind: interaction effects. Planetary Space Sci. 1991, vol. 39, pp. 737–744.

3. Eselevich V.G., Fainshtein V.G. On the existence of the heliospheric current sheet without a neutral line. Planetary Space Sсi. 1992, vol. 40, pp. 105., Eselevich V.G., Fainshtein V.G. On the existence of the heliospheric current sheet without a neutral line. Planetary Space Ssi. 1992, vol. 40, pp. 105.

4. Eselevich M.V., Eselevich V.G. Some features of coronal streamer belt in the solar corona and in Earth’s orbit. Astronomicheskii Zhurnal [Astron. J.]. 2006a, vol. 83, no. 9, pp. 837–852. (In Russian)., Eselevich M.V., Eselevich V.G. Some features of coronal streamer belt in the solar corona and in Earth’s orbit. Astronomicheskii Zhurnal [Astron. J.]. 2006a, vol. 83, no. 9, pp. 837–852. (In Russian).

5. Eselevich M.V., Eselevich V.G. Manifestation of radial structure of the coronal streamer belt as sharp peaks in the solar wind plasma density in Earth’s orbit. Geomagnetism and Aeronomy. 2006b, vol. 46, iss.6, pp. 710–782. DOI: 10.1134/ S0016793206060132., Eselevich M.V., Eselevich V.G. Manifestation of radial structure of the coronal streamer belt as sharp peaks in the solar wind plasma density in Earth’s orbit. Geomagnetism and Aeronomy. 2006b, vol. 46, iss.6, pp. 710–782. DOI: 10.1134/ S0016793206060132.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3