Critical review of AMR risks arising as a consequence of using biocides and certain heavy metals in food animal production

Author:

James Christian, ,James Stephen J,Onarinde Bukola A,Dixon Ronald A.,Williams Nicola, , ,

Abstract

Antimicrobial resistance (AMR) is the resistance of a microorganism to an antimicrobial agent (a substance that kills or stops the growth of microorganisms) that was originally effective for treatment of infections caused by it. As a result standard antimicrobial drug treatments may become ineffective, lead to infections persisting, increasing the risk of spread to others, and negative clinical outcomes. AMR is a major public health issue worldwide and it is estimated that unless action is taken to tackle AMR, the global impact of AMR could be 10 million deaths annually from drug-resistant infections by 2050 and cost up to US $100 trillion in terms of cumulative lost global production (O’Neill, 2016). Addressing the public health threat posed by AMR is a national strategic priority for the UK and led to the Government publishing both a 20-year vision of AMR (Opens in a new window) and a 5-year (2019 to 2024) AMR National Action Plan (NAP) (Opens in a new window), which sets out actions to slow the development and spread of AMR. Intensive food animal production plays an important role in the development and spread of AMR and is one of many routes by which consumers can be exposed to antimicrobial-resistant bacteria. This review was carried out to help increase our understanding of whether, and to what extent, the use of biocides (disinfectants and sanitisers) and heavy metals (used in feed and other uses) in animal production leads to the development and spread of AMR within the food chain (a subject highlighted in the NAP). Whether this could potentially lead to greater consumer exposure to antimicrobial-resistant bacteria present in our food, either directly through consumption of foods derived from animals that have undergone treatment (for example from the use of heavy metals in animal feed) or indirectly (for example from exposure of crops to contaminated soil or ground water) is not known. Focused searching of three literature databases (Web of Science (Opens in a new window), Scopus (Opens in a new window), and MEDLINE (Opens in a new window)) was undertaken, supplemented by additional records identified through other sources. Due to the range of publications identified and different laboratory methodologies used in these studies no statistical analysis was possible, so instead, a narrative approach was taken to their review and to the review of supplementary materials. We conclude that there is published evidence that the release of chemicals like biocides (in particular disinfectants) and/or heavy metals from food animal production have the potential to contribute to the selection, emergence, and spread of AMR (as bacteria or genes) that could be acquired by consumers, and that this could present a potential risk to the consumer as a result. The published evidence is sparse and there are significant knowledge gaps (as detailed in this report). Currently there are insufficient data for a comprehensive and quantitative assessment of risk, and a need for focussed in-field studies (as detailed in this report) to be carried out to fill these knowledge gaps and confirm whether there is an actual risk.

Publisher

Food Standards Agency

Reference234 articles.

1. Aarestrup, F. M., Cavaco, L., & Hasman, H. (2010). Decreased susceptibility to zinc chloride is associated with methicillin resistant Staphylococcus aureus CC398 in Danish swine. Veterinary Microbiology, 142(3-4), 455-457. https://doi.org/10.1016/j.vetmic.2009.10.021 (Opens in a new window).

2. Abd El-Aziz, N. K., Ammar, A. M., El Damaty, H. M., Abd Elkader, R. A., Saad, H. A., El-Kazzaz, W., & Khalifa, E. (2021). Environmental Streptococcus uberis associated with clinical mastitis in dairy cows: virulence traits, antimicrobial and biocide resistance, and epidemiological typing. Animals, 11(7), 1849. https://doi.org/10.3390/ani11071849 (Opens in a new window).

3. Agga, G. E., Scott, H. M., Amachawadi, R. G., Nagaraja, T. G., Vinasco, J., Bai, J., Norby, B., Renter, D. G., Dritz, S. S., Nelssen, J. L., & Tokach, M. D. (2014). Effects of chlortetracycline and copper supplementation on antimicrobial resistance of fecal Escherichia coli from weaned pigs. Preventive Veterinary Medicine, 114(3-4), 231-246. http://dx.doi.org/10.1016/j.prevetmed.2014.02.010 (Opens in a new window).

4. Agga, G. E., Scott, H. M., Vinasco, J., Nagaraja, T. G., Amachawadi, R. G., Bai, J., Norby, B., Renter, D. G., Dritz, S. S., Nelssen, J. L., & Tokach, M. D. (2015). Effects of chlortetracycline and copper supplementation on the prevalence, distribution, and quantity of antimicrobial resistance genes in the fecal metagenome of weaned pigs. Preventive Veterinary Medicine, 119(3-4), 179-189. http://dx.doi.org/10.1016/j.prevetmed.2015.02.008 (Opens in a new window).

5. Ajewole, O. A., Ikhimiukor, O. O., & Adelowo, O. O. (2021). Heavy metals (Cu and Zn) contamination of pond sediment and co-occurrence of metal and antibiotic resistance in Escherichia coli from Nigerian aquaculture. International Journal of Environmental Studies, 78(5), 773-784. https://doi.org/10.1080/00207233.2020.1804741 (Opens in a new window).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3