Water Quality Prediction Using Machine Learning

Author:

Iyer Srinidhi,Kaushik Simran,Nandal Poonam

Abstract

This paper shows the use of ML algorithms for the prediction of water quality. The model is trained on Water Quality dataset from Kaggle and it consists of key features such as, pH value, hardness, solids etc. Algorithms used were SVM, Random Forest and Decision Tree. Also, hyperparameter tuning was done in SVM for improving the accuracy using Grid Search technique. The Random Forest algorithm out-performed the others with an accuracy of 68%. Hence, it shows that ML can be used for predicting the quality of water.

Publisher

Manav Rachna International Institute of Research and Studies

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Utilizing machine learning techniques for enhanced water quality monitoring;Water Quality Research Journal;2024-08-30

2. Predicting Water Quality using Machine Learning Techniques;2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN);2024-07-03

3. WaQuPs: A ROS-Integrated Ensemble Learning Model for Precise Water Quality Prediction;Applied Sciences;2023-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3