Resting-state QEEG Neuro-Biomarkers for Diagnosis and Treatment Planning of Autism Spectrum Disorders

Author:

Al-Salihy Adil Abdul-Rehman Siddiq

Abstract

Background: Autism Spectrum Disorder (ASD) is a combination of complex neurodevelopment disabilities. Early resting-state EEG investigations of autism failed to identify consistent patterns of atypical neural activity. The evidence for the U-shaped profile of electrophysiological power alterations in ASD is primarily supportive, but a more hypothesis-driven effort is needed to confirm and validate it. Aim of study: The primary objective of the present study was to investigate the resting-state QEEG neuro-biomarkers by amplitude analysis as a diagnostic tool for autistic children, compared with a normative group while recording qEEG during an eyes-open condition. Patients and Methods: After excluding those with less than one-minute artifact-free EEG data or too many artifacts, the final participants were (N = 34) autistic children. The age range was 2-11 years (mean age 6.235 ± SD 2.7198 years), including 30 males (mean age 6.1667 ± SD 2.730 years) and four females (mean age 6.75 ± SD 2.986 years). For the qEEG recording, BrainMaster Discovery 20 module and BrainAvatar 4.0 Discovery (Acquisition software) were used. Results: After calculating and analyzing all the QEEG data, the findings were categorized and confirmed the U-shaped power profile as an autism signature and as a diagnostic sign, characterized by excessive absolute power in low-frequencies (delta, theta) and high-frequencies bands (beta, hiBeta) and reduced absolute-power in a midrange frequency band (alpha). Conclusions: Recent literature and our findings have shown that ASD individuals have disturbances of neural connectivity. Neurofeedback (NFB) treatment seems to be an excellent approach to regulating such disorders when using QEEG neuro-biomarkers as a part of treatment planning.

Publisher

University of Kufa

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3