In Silico, In Vitro and Ex Vivo Evaluation of the Antihyperglycaemic, Antioxidant and Cytotoxic Properties of Coccinia grandis L. Leaf Extract

Author:

Prabhakar Pawan1ORCID,Mukherjee Sayan2ORCID,Kumar Ankit3ORCID,Kumar Rout Rahul3ORCID,Kumar Suraj1ORCID,Kumar Verma Deepak3ORCID,Dhara Santanu2ORCID,Rao Pavuluri Srinivasa3ORCID,Kumar Maiti Mrinal4ORCID,Banerjee Mamoni1ORCID

Affiliation:

1. Bio-Research Laboratory, Rajendra Mishra School of Engineering Entrepreneurship, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India

2. School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India

3. Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India

4. Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India

Abstract

Research background. Coccinia grandis L. is traditionally used for the treatment of diabetes mellitus. Since the scientific evidence and mechanism of action have not yet been extensively investigated, this study aims to evaluate the antidiabetic and cytotoxic effects together with the optimisation and development of a scale-up process design for higher yields of bioactive phytocompounds from C. grandis. Experimental approach. The in silico study was conducted to predict the binding affinity of phytocompounds of C. grandis for α-amylase and α-glucosidase enzymes involved in the pathophysiology of diabetes with pharmacokinetic assessment. Response surface methodology was used to determine the optimum total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC) and antioxidant activities (DPPH and FRAP) in 17 different experimental runs in which the parameters of microwave-assisted extraction such as temperature (50–70 °C), power (400–1000 W) and time (15–45 min) were varied. The phytocompounds were purified and identified using column chromatography, thin-layer chromatography (TLC), UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR) and liquid chromatography-mass spectrometry (LC-MS). The in vitro antidiabetic activity was determined by α-amylase and α-glucosidase enzymatic inhibitory assays, while cytotoxic investigations were done by measuring haemolytic activity, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and chorioallantoic membrane (CAM) assays. Results and conclusions. The reported major bioactive compounds have shown an excellent binding affinity for α-amylase and α-glucosidase enzymes in the range of −14.28 to -36.12 kJ/mol with good pharmacokinetic properties and toxicities ranging from low to medium. The bioactive constituents such as total phenols, total flavonoids, total tannins and antioxidant activities such as DPPH and FRAP were found to be high and dependent on the optimised microwave-assisted extraction parameters such as temperature, time and power: 55 °C, 45 min and 763 W, respectively. Sixteen compounds were identified by FTIR and LC-MS spectra in the plant sample after preliminary identification, purification and TLC. The percentage of enzyme inhibition depended on the concentration of the extract (7.8–125.0 μg/mL) and was higher than that of acarbose. The haemolytic activity was in accordance with ISO standards and low toxicity was observed in the MTT and CAM assays in the range of 7.8−125.0 μg/mL, suggesting its potential use as an antidiabetic drug and for functional food development. Novelty and scientific contribution. The results of the study open up new opportunities for researchers, scientists and entrepreneurs in the food and pharmaceutical sectors to develop antidiabetic foods and medicines that help diabetics to better control their condition and maintain overall health.

Publisher

Faculty of Food Technology and Biotechnology - University of Zagreb

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3